Live is Life: Efficient Two-pass Per-title Encoding for Adaptive Live Streaming (Industry demo at ICIP 2022)

2022 IEEE International Conference on Image Processing (ICIP)

October 16-19, 2022 | Bordeaux, France

Conference Website

 

Abstract: According to the Bitmovin Video Developer Report 2021, live streaming at scale has the highest scope for innovation in video streaming services. Currently, there are no open-source implementations available which can predict video complexity for live streaming applications. To this light, we plan to demo the functions of VCA software, and show accuracy of the complexities analyzed by VCA (https://vca.itec.aau.at) using the heatmaps, and show-case the speed of video complexity analysis. VCA can achieve an analysis speed of about 370fps compared to the 5fps speed of the reference SITI implementation. Hence, we show that it can be used for live streaming applications.

In the demo, we also showcase an application of VCA in detail: optimized CRF prediction for adaptive streaming, which is being presented in ICIP’22 (Paper ID: 2030). This scheme improves the compression efficiency of the conventional ABR encoding for live streaming.

Contributors:

  • Vignesh V Menon, University of Klagenfurt, Austria (vignesh.menon@aau.at)
  • Christian Feldmann, Bitmovin, Austria (christian.feldmann@bitmovin.com)
  • Hadi Amirpour, University of Klagenfurt, Austria (hadi.amirpour@aau.at)
  • Christian Timmerer, Bitmovin, Austria (christian.timmerer@bitmovin.com)
Posted in News | Comments Off on Live is Life: Efficient Two-pass Per-title Encoding for Adaptive Live Streaming (Industry demo at ICIP 2022)

DoFP+: An HTTP/3-based Adaptive Bitrate Approach Using Retransmission Techniques

IEEE Access, A Multidisciplinary, Open-access Journal of the IEEE
[PDF]

Minh Nguyen (Christian Doppler Laboratory ATHENA, Alpen-Adria-Universität Klagenfurt), Daniele Lorenzi (Christian Doppler Laboratory ATHENA, Alpen-Adria-Universität Klagenfurt), Farzad Tashtarian (Christian Doppler Laboratory ATHENA, Alpen-Adria-Universität Klagenfurt), Hermann Hellwagner (Christian Doppler Laboratory ATHENA, Alpen-Adria-Universität Klagenfurt), Christian Timmerer (Christian Doppler Laboratory ATHENA, Alpen-Adria-Universität Klagenfurt)

(*) Minh Nguyen and Daniele Lorenzi contributed equally to this work

dofp+_motivation

Abstract: HTTP Adaptive Streaming (HAS) solutions use various adaptive bitrate (ABR) algorithms to select suitable video qualities with the objective of coping with the variations of network connections. HTTP has been evolving with various versions and provides more and more features. Most of the existing ABR algorithms do not significantly benefit from the HTTP development when they are merely supported by the most recent HTTP version. An open research question is “How can new features of the recent HTTP versions be used to enhance the performance of HAS?” To address this question, in this paper, we introduce Days of Future Past+ (DoFP+ for short), a heuristic algorithm that takes advantage of the features of the latest HTTP version, HTTP/3, to provide high Quality of Experience (QoE) to the viewers. DoFP+ leverages HTTP/3 features, including (i) stream multiplexing, (ii) stream priority, and (iii) request cancellation to upgrade low-quality segments in the player buffer while downloading the next segment. The qualities of those segments are selected based on an objective function and throughput constraints. The objective function takes into account two factors, namely the (i) average bitrate and the (ii) video instability of the considered set of segments. We also examine different strategies of download order for those segments to optimize the QoE in limited resources scenarios. The experimental results show an improvement in QoE by up to 33% while the number of stalls and stall duration for DoFP+ are reduced by 86% and 92%, respectively, compared to state-of-the-art ABR schemes. In addition, DoFP+ saves on average up to 16% downloaded data across all test videos. Also, we find that downloading segments sequentially brings more benefits for retransmissions than concurrent downloads; and lower-quality segments should be upgraded before other segments to gain more QoE improvement. Our source code has been published for reproducibility at https://github.com/cd-athena/DoFP-Plus.

Keywords: HTTP/3, ABR algorithm, QoE, HAS, DASH

Posted in News | Comments Off on DoFP+: An HTTP/3-based Adaptive Bitrate Approach Using Retransmission Techniques

Internship 2023 at ATHENA

At Christian Doppler laboratory ATHENA, we offer an internship*) for 2023 for Master Students and we kindly request your applications until the 20th of January 2023 with the following data (in German or English):

  • CV
  • Record of study/transcript (“Studienerfolgsnachweis”)

*) A 3 months period in 2023 (with an exact time slot to be discussed) with the possibility to spend up to 1-month at the industrial partner; 20h per week “Universitäts-KV, Verwendungsgruppe C1, studentische Hilfskraft”

Please send your application by email to nina.stiller@aau.at.

About ATHENA: The Christian Doppler laboratory ATHENA (AdapTive Streaming over HTTP and Emerging Networked MultimediA Services) is jointly proposed by the Institute of Information Technology (ITEC; http://itec.aau.at) at Alpen-Adria-Universität Klagenfurt (AAU) and Bitmovin GmbH (https://bitmovin.com) to address current and future research and deployment challenges of HAS and emerging streaming methods. AAU (ITEC) has been working on adaptive video streaming for more than a decade, has a proven record of successful research projects and publications in the field, and has been actively contributing to MPEG standardization for many years, including MPEG-DASH; Bitmovin is a video streaming software company founded by ITEC researchers in 2013 and has developed highly successful, global R&D and sales activities and a world-wide customer base since then.

The aim of ATHENA is to research and develop novel paradigms, approaches, (prototype) tools, and evaluation results for the phases

  1. multimedia content provisioning,
  2. content delivery, and
  3. content consumption in the media delivery chain as well as for
  4. end-to-end aspects, with a focus on, but not being limited to, HTTP Adaptive Streaming (HAS).

The new approaches and insights are to enable Bitmovin to build innovative applications and services to account for the steadily increasing and changing multimedia traffic on the Internet.

Posted in News | Comments Off on Internship 2023 at ATHENA

Content-adaptive Encoder Preset Prediction for Adaptive Live Streaming

2022 Picture Coding Symposium (PCS)

December 7-9, 2022 | San Jose, CA, USA

Conference Website
[PDF][Slides]

Vignesh V Menon (Alpen-Adria-Universität Klagenfurt),  Hadi Amirpour (Alpen-Adria-Universität Klagenfurt), Prajit T Rajendran (Universite Paris-Saclay, France), Mohammad Ghanbari (School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK), and Christian Timmerer (Alpen-Adria-Universität Klagenfurt)

Abstract:

In live streaming applications, a fixed set of bitrate-resolution pairs (known as bitrate ladder) is generally used to avoid additional pre-processing run-time to analyze the complexity of every video content and determine the optimized bitrate ladder. Furthermore, live encoders use the fastest available preset for encoding to ensure the minimum possible latency in streaming. For live encoders, it is expected that the encoding speed is equal to the video framerate. However, an optimized encoding preset may result in (i) increased Quality of Experience (QoE) and (ii) improved CPU utilization while encoding. In this light, this paper introduces a Content-Adaptive encoder Preset prediction Scheme (CAPS) for adaptive live video streaming applications. In this scheme, the encoder preset is determined using Discrete Cosine Transform (DCT)-energy-based low-complexity spatial and temporal features for every video segment, the number of
CPU threads allocated for each encoding instance, and the target encoding speed. Experimental results show that CAPS yields an overall quality improvement of 0.83 dB PSNR and 3.81 VMAF with the same bitrate, compared to the fastest preset encoding
of the HTTP Live Streaming (HLS) bitrate ladder using x265 HEVC open-source encoder. This is achieved by maintaining the desired encoding speed and reducing CPU idle time.

Posted in News | Comments Off on Content-adaptive Encoder Preset Prediction for Adaptive Live Streaming

Light-weight Video Encoding Complexity Prediction using Spatio Temporal Features

2022 IEEE 24th International Workshop on Multimedia Signal Processing (MMSP)

September 26-28, 2022 | Shanghai, China

Conference Website

[PDF]

Hadi Amirpour (Alpen-Adria-Universität Klagenfurt), Prajit T Rajendran (Universite Paris-Saclay, Paris, France), Vignesh V Menon (Alpen-Adria-Universität Klagenfurt),   Mohammad Ghanbari (School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK)and Christian Timmerer (Alpen-Adria-Universität Klagenfurt)

Abstract:

The increasing demand for high-quality and low-cost video streaming services calls for the prediction of video encoding complexity. The prior prediction of video encoding complexity including encoding time and bitrate predictions are used to allocate resources and set optimized parameters for video encoding effectively. In this paper, a light-weight video encoding complexity prediction (VECP) scheme that predicts the encoding bitrate and the encoding time of video with high accuracy is proposed. Firstly, low-complexity Discrete Cosine Transform (DCT)-energy-based features, namely spatial complexity, temporal complexity, and brightness of videos are extracted, which can efficiently
represent the encoding complexity of videos. The latent vectors are also extracted from a Convolutional Neural Network (CNN) with MobileNet as the backend to obtain additional features from representative frames of each video to assist the prediction process. The extreme gradient boosting (XGBoost) regression algorithm is deployed to predict video encoding complexity using the extracted features. The experimental results demonstrate that VECP predicts the encoding bitrate with an error percentage of up to 3.47% and encoding time with an error percentage of up to 2.89%, but with a significantly low overall latency of 3.5 milliseconds per frame which makes it suitable for both Video on Demand (VoD) and live streaming applications.

VECP architecture

Posted in News | Comments Off on Light-weight Video Encoding Complexity Prediction using Spatio Temporal Features

ETPS: Efficient Two-pass Encoding Scheme for Adaptive Live Streaming

2022 IEEE International Conference on Image Processing (ICIP)

October 16-19, 2022 | Bordeaux, France

Conference Website

[PDF][Slides][Video]

Vignesh V Menon (Alpen-Adria-Universität Klagenfurt),  Hadi Amirpour (Alpen-Adria-Universität Klagenfurt), Mohammad Ghanbari (School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK)and Christian Timmerer (Alpen-Adria-Universität Klagenfurt)

Abstract: In two-pass encoding, also known as multi-pass encoding, the input video content is analyzed in the first-pass to help the second-pass encoding utilize better encoding decisions and improve overall compression efficiency. In live streaming applications, a single-pass encoding scheme is mainly used to avoid the additional first-pass encoding run-time to analyze the complexity of every video content. This paper introduces an Efficient low-latency Two-Pass encoding Scheme (ETPS) for live video streaming applications. In this scheme, Discrete Cosine Transform (DCT)-energy-based low-complexity spatial and temporal features for every video segment are extracted in the first-pass to predict each target bitrate’s optimal constant rate factor (CRF) for the second-pass constrained variable bitrate (cVBR) encoding. Experimental results show that, on average, ETPS compared to a traditional two-pass average bitrate encoding scheme yields encoding time savings of 43.78% without any noticeable drop in compression efficiency. Additionally, compared to a single-pass constant bitrate (CBR) encoding, it yields bitrate savings of 10.89% and 8.60% to maintain the same PSNR and VMAF, respectively.

ETPS architecture

Posted in News | Comments Off on ETPS: Efficient Two-pass Encoding Scheme for Adaptive Live Streaming

Hermann Hellwagner received appreciation award

We are happy to announce and our congratulations to Dr. Hermann Hellwagner for  receiving the appreciation award of Carinthia in the area of natural/technical sciences.

Posted in News | Comments Off on Hermann Hellwagner received appreciation award