Patent Approval for “Scalable Per-Title Encoding”

Scalable Per-Title Encoding 

US Patent

[PDF]

Hadi Amirpour (Alpen-Adria-Universität Klagenfurt, Austria) and Christian Timmerer (Alpen-Adria-Universität Klagenfurt, Austria)

 

Abstract: A scalable per-title encoding technique may include detecting scene cuts in an input video received by an encoding network or system, generating segments of the input video, performing per-title encoding of a segment of the input video, training a deep neural network (DNN) for each representation of the segment, thereby generating a trained DNN, compressing the trained DNN, thereby generating a compressed trained DNN, and generating an enhanced bitrate ladder including metadata comprising the compressed trained DNN. In some embodiments, the method also may include generating a base layer bitrate ladder for CPU devices, and providing the enhanced bitrate ladder for GPU-available devices.

Posted in ATHENA | Comments Off on Patent Approval for “Scalable Per-Title Encoding”

In-Band Quality Notification from Users to ISPs

In-Band Quality Notification from Users to ISPs

IEEE 13th International Conference on Cloud Networking (CloudNet)

27–29 November 2024 // Rio de Janeiro, Brazil

[PDF]

Leonardo Peroni (UC3M, Spain); Sergey Gorinsky (IMDEA Networks Institute, Spain); Farzad Tashtarian (Alpen-Adria Universität Klagenfurt, Austria)

Abstract: While ISPs (Internet service providers) strive to improve QoE (quality of experience) for end users, end-to-end traffic encryption by OTT (over-the-top) providers undermines independent inference of QoE by an ISP. Due to the economic and technological complexity of the modern Internet, ISP-side QoE inference based on OTT assistance or out-of-band signaling sees low adoption. This paper presents IQN (in-band quality notification), a novel mechanism for signaling QoE impairments from an automated agent on the end-user device to the server-to-client ISP responsible for QoE-impairing congestion. Compatible with multi-ISP paths, asymmetric routing, and other Internet realities, IQN does not require OTT support and induces the OTT server to emit distinctive packet patterns that encode QoE information, enabling ISPs to infer QoE by monitoring these patterns in network traffic. We develop a prototype system, YouStall, which applies IQN signaling to ISP-side inference of YouTube stalls.
Cloud-based experiments with YouStall on YouTube Live streams validate IQN’s feasibility and effectiveness, demonstrating its potential for accurate user-assisted ISP-side QoE inference from encrypted traffic in real Internet environments.

Index Terms— End user, QoE, ISP, QoE-impairment inference, OTT provider, end-to-end traffic encryption, in-band signaling.

Posted in ATHENA | Comments Off on In-Band Quality Notification from Users to ISPs

Characterizing the Geometric Complexity of G-PCC Compressed Point Clouds

Characterizing the Geometric Complexity of G-PCC Compressed Point Clouds

IEEE Visual Communications and Image Processing (IEEE VCIP 2024)

Tokyo, Japan, December 8-11, 2024

[PDF]

Annalisa Gallina (UNIPD, Italy), Hadi Amirpour (AAU, Austria), Sara Baldoni (UNIPD, Italy), Giuseppe Valenzise (UPSaclay, France), Federica Battisti (UNIPD, Italy).

Abstract: Measuring the complexity of visual content is crucial in various applications, such as selecting sources to test processing algorithms, designing subjective studies, and efficiently determining the appropriate encoding parameters and bandwidth allocation for streaming. While spatial and temporal complexity measures exist for 2D videos, a geometric complexity measure for 3D content is still lacking.
In this paper, we present the first study to characterize the geometric complexity of 3D point clouds. Inspired by existing complexity measures, we propose several compression-based definitions of geometric complexity derived from the rate-distortion curves obtained by compressing a dataset of point clouds using G-PCC. Additionally, we introduce density-based and geometry-based descriptors to predict complexity. Our initial results show that even simple density measures can accurately predict the geometric complexity of point clouds.

Index Terms— Point cloud, complexity, compression, G-PCC.

Posted in ATHENA | Comments Off on Characterizing the Geometric Complexity of G-PCC Compressed Point Clouds

Energy-Efficient Video Streaming: A Study on Bit Depth and Color Subsampling

Energy-Efficient Video Streaming: A Study on Bit Depth and Color Subsampling

IEEE Visual Communications and Image Processing (IEEE VCIP 2024)

Tokyo, Japan, December 8-11, 2024

[PDF]

Hadi Amirpour (AAU, Austria), Lingfeng Qu (Guangzhou University, China), Jong Hwan Ko (SKKU, South Korea), Cosmin Stejerean (Meta, USA), Christian Timmerer (AAU, Austria)

Abstract: As video dimensions — including resolution, frame rate, and bit depth — increase, a larger bitrate is required to maintain a higher Quality of Experience (QoE). While videos are often optimized for resolution and frame rate to improve compression and energy efficiency, the impact of color space is often overlooked.
Larger color spaces are essential for avoiding color banding and delivering High Dynamic Range (HDR) content with richer, more accurate colors, although this comes at the cost of higher processing energy. This paper investigates the effects of bit depth and color subsampling on video compression efficiency and energy consumption. By analyzing different bit depths and subsampling schemes, we aim to determine optimized settings that balance compression efficiency with energy consumption, ultimately contributing to more sustainable and high-quality video delivery. We evaluate both encoding and decoding energy consumption and assess the quality of videos using various metrics including PSNR, VMAF, ColorVideoVDP, and CAMBI. Our findings offer valuable insights for video codec developers and content providers aiming to improve the performance and environmental footprint of their video streaming services.

Index Terms— Video encoding, video decoding, video quality, bit depth, color subsampling, energy.

Posted in ATHENA | Comments Off on Energy-Efficient Video Streaming: A Study on Bit Depth and Color Subsampling

MVCD: Multi-Dimensional Video Compression Dataset

MVCD: Multi-Dimensional Video Compression Dataset

IEEE Visual Communications and Image Processing (IEEE VCIP 2024)

Tokyo, Japan, December 8-11, 2024

[PDF]

Hadi Amirpour (AAU, Austria), Mohammad Ghasempour (AAU, Austria), Farzad Tashtarian (AAU, Austria), Ahmed Telili (TII, UAE), Samira Afzal (AAU, Austria), Wassim Hamidouche (INSA, France), Christian Timmerer (AAU, Austria)

Abstract: In the field of video streaming, the optimization of video encoding and decoding processes is crucial for delivering high-quality video content. Given the growing concern about carbon dioxide emissions, it is equally necessary to consider the energy consumption associated with video streaming. Therefore, to take advantage of machine learning techniques for optimizing video delivery, a dataset encompassing the energy consumption of the encoding and decoding process is needed. This paper introduces a comprehensive dataset featuring diverse video content, encoded and decoded using various codecs and spanning different devices. The dataset includes 1000 videos encoded with four resolutions (2160p, 1080p, 720p, and 540p) at two frame rates (30 fps and 60 fps), resulting in eight unique encodings for each video. Each video is further encoded with four different codecs — AVC (libx264), HEVC (libx265), AV1 (libsvtav1), and VVC (VVenC) — at four quality levels defined by QPs of 22, 27, 32, and 37. In addition, for AV1, three additional QPs of 35, 46, and 55 are considered. We measure both encoding and decoding time and energy consumption on various devices to provide a comprehensive evaluation, employing various metrics and tools. Additionally, we assess encoding bitrate and quality using quality metrics such as PSNR, SSIM, MS-SSIM, and VMAF. All data and the reproduction commands and scripts have been made publicly available as part of the dataset, which can be used for various applications such as rate and quality control, resource allocation, and energy-efficient streaming.

Dataset URL: https://github.com/cd-athena/MVCD

Index Terms— Video encoding, decoding, energy, complexity, quality.

Posted in ATHENA | Comments Off on MVCD: Multi-Dimensional Video Compression Dataset

Energy-Quality-aware Variable Framerate Pareto-Front for Adaptive Video Streaming

Energy-Quality-aware Variable Framerate Pareto-Front for Adaptive Video Streaming

IEEE Visual Communications and Image Processing (IEEE VCIP 2024)

Tokyo, Japan, December 8-11, 2024

[PDF]

Prajit T Rajendran (Universite Paris-Saclay), Samira Afzal (Alpen-Adria-Universität Klagenfurt), Vignesh V Menon (Fraunhofer HHI), Christian Timmerer (Alpen-Adria-Universität Klagenfurt)

Abstract: Optimizing framerate for a given bitrate-spatial resolution pair in adaptive video streaming is essential to maintain perceptual quality while considering decoding complexity. Low framerates at low bitrates reduce compression artifacts and decrease decoding energy. We propose a novel method, Decoding-complexity aware Framerate Prediction (DECODRA), which employs a Variable Framerate Pareto-front approach to predict an optimized framerate that minimizes decoding energy under quality degradation constraints. DECODRA dynamically adjusts the framerate based on current bitrate and spatial resolution, balancing trade-offs between framerate, perceptual quality, and decoding complexity. Extensive experimentation with the Inter-4K dataset demonstrates DECODRA’s effectiveness, yielding an average PSNR and VMAF increase of 0.87 dB and 5.14 points, respectively, for the same bitrate compared to the default 60 fps encoding. Additionally, DECODRA achieves an average reduction in decoding energy consumption of 13.27 %, enhancing the viewing experience, extending mobile device battery life, and reducing the energy footprint of streaming services.

Index Terms—Adaptive video streaming; Decoding complexity; Framerate optimization; Perceptual quality; Decoding energy consumption

Posted in ATHENA | Comments Off on Energy-Quality-aware Variable Framerate Pareto-Front for Adaptive Video Streaming

ACM Mile-High Video Conference 2025: Call for Contributions

MHV 2025: ACM Mile-High Video Conference 2025
Call for Contributions
February 18-20, 2025, The Cable Center, Denver, Colorado
https://www.mile-high.video/
Posted in ATHENA, News | Comments Off on ACM Mile-High Video Conference 2025: Call for Contributions