ACM TOMM: HTTP Adaptive Streaming: A Review on Current Advances and Future Challenges

HTTP Adaptive Streaming: A Review on Current Advances and Future Challenges

ACM Transactions on Multimedia Computing, Communications, and Applications

[PDF]

Christian Timmerer (AAU, AT), Hadi Amirpour (AAU, AT), Farzad Tashtarian (AAU, AT), Samira Afzal (AAU, AT), Amr Rizk (Leibniz University Hannover, DE), Michael Zink (University of Massachusetts Amherst, US), and Hermann Hellwagner (AAU, AT)

Abstract: Video streaming has evolved from push-based, broad-/multicasting approaches with dedicated hard-/software infrastructures to pull-based unicast schemes utilizing existing Web-based infrastructure to allow for better scalability. In this article, we provide an overview of the foundational principles of HTTP adaptive streaming (HAS), from video encoding to end user consumption, while focusing on the key advancements in adaptive bitrate algorithms, quality of experience (QoE), and energy efficiency. Furthermore, the article highlights the ongoing challenges of optimizing network infrastructure, minimizing latency, and managing the environmental impact of video streaming. Finally, future directions for HAS, including immersive media streaming and neural network-based video codecs, are discussed, positioning HAS at the forefront of next-generation video delivery technologies.

Keywords: HTTP Adaptive Streaming, HAS, DASH, Video Coding, Video Delivery, Video Consumption, Quality of Experience, QoE

Posted in ATHENA | Comments Off on ACM TOMM: HTTP Adaptive Streaming: A Review on Current Advances and Future Challenges

ICME 2025: Neural Representations for Scalable Video Coding

Neural Representations for Scalable Video Coding

IEEE International Conference on Multimedia & Expo (ICME) 2025

June 30 – July 4, 2025

Nantes, France

[PDF]

Yiying Wei (AAU, Austria), Hadi Amirpour (AAU, Austria) and Christian Timmerer (AAU, Austria)

Abstract: Scalable video coding encodes a video stream into multiple layers so that it can be decoded at different levels of quality/resolution, depending on the device’s capabilities or the available network bandwidth. Recent advances in implicit neural representation (INR)-based video codecs have shown competitive compression performance to both traditional and other learning-based methods. In INR approaches, a neural network is trained to overfit a video sequence, and its parameters are compressed to create a compact representation of the video content. While they achieve promising results, existing INR-based codecs require training separate networks for each resolution/quality of a video, making them challenging for scalable compression. In this paper, we propose Neural representations for Scalable Video Coding (NSVC) that encodes multi-resolution/-quality videos into a single neural network comprising multiple layers. The base layer (BL) of the neural network encodes video streams with the lowest resolution/quality. Enhancement layers (ELs) encode additional information that can be used to reconstruct a higher resolution/quality video during decoding using the BL as a starting point. This multi-layered structure allows the scalable bitstream to be truncated to adapt to the client’s bandwidth conditions or computational decoding requirements. Experimental results show that NSVC outperforms AVC’s Scalable Video Coding (SVC) extension and surpasses HEVC’s scalable extension (SHVC) in terms of VMAF. Additionally, NSVC achieves comparable decoding speeds at high resolutions/qualities.

Posted in ATHENA | Comments Off on ICME 2025: Neural Representations for Scalable Video Coding

IEEE TMM: VQM4HAS: A Real-time Quality Metric for HEVC Videos in HTTP Adaptive Streaming

VQM4HAS: A Real-time Quality Metric for HEVC Videos in HTTP Adaptive Streaming

IEEE Transactions on Multimedia

[PDF]

 Hadi Amirpour (AAU, AT), Jingwen Zhu (Nantes University, FR), Wei Zhu (Cardiff University, UK), Patrick Le Callet (Nantes University, FR), and Christian Timmerer (AAU, AT)

Abstract: In HTTP Adaptive Streaming (HAS), a video is encoded at various bitrate-resolution pairs, collectively known as the bitrate ladder, allowing users to select the most suitable representation based on their network conditions. Optimizing this set of pairs to enhance the Quality of Experience (QoE) requires accurately measuring the quality of these representations. VMAF and ITU-T’s P.1204.3 are highly reliable metrics for assessing the quality of representations in HAS. However, in practice, using these metrics for optimization is often impractical for live streaming applications due to their high computational costs and the large number of bitrate-resolution pairs in the bitrate ladder that need to be evaluated. To address their high complexity, our paper introduces a new method called VQM4HAS, which extracts low-complexity features including (i) video complexity features, (ii) frame-level encoding statistics logged during the encoding process, and (iii) lightweight video quality metrics. These extracted features are then fed into a regression model to predict VMAF and P.1204.3, respectively.
The VQM4HAS model is designed to operate on a per bitrate-resolution pair, per-resolution, and cross-representation basis, optimizing quality predictions across different HAS scenarios.
Our experimental results demonstrate that VQM4HAS achieves a high correlation with VMAF and P.1204.3, with Pearson correlation coefficients (PCC) ranging from 0.95 to 0.96 for VMAF and 0.97 to 0.99 for P.1204.3, depending on the resolution. Despite achieving a high correlation with VMAF and P.1204.3, VQM4HAS exhibits significantly less complexity than both metrics, with 98% and 99% less complexity for VMAF and P.1204.3, respectively, making it suitable for live streaming scenarios.
We also conduct a feature importance analysis to further reduce the complexity of the proposed method.
Furthermore, we evaluate the effectiveness of our method by using it to predict subjective quality scores. The results show that VQM4HAS achieves a higher correlation with subjective scores at various resolutions, despite its minimal complexity.

 

Posted in ATHENA | Comments Off on IEEE TMM: VQM4HAS: A Real-time Quality Metric for HEVC Videos in HTTP Adaptive Streaming

ACM MM’25 Tutorial: Perceptually Inspired Visual Quality Assessment in Multimedia Communication

ACM MM 2025
October 27, 2025

Dublin, Ireland

https://acmmm2025.org/tutorial/

Tutorial speakers:

  • Wei Zhou (Cardiff University)
  • Hadi Amirpour (University of Klagenfurt)

Tutorial description:

As multimedia services like video streaming, video conferencing, virtual reality (VR), and online gaming continue to expand, ensuring high perceptual quality becomes a priority for maintaining user satisfaction and competitiveness. However, during acquisition, compression, transmission, and storage, multimedia content undergoes various distortions, causing degradation in experienced quality. Thus, perceptual quality assessment, which focuses on evaluating the quality of multimedia content based on human perception, is essential for optimizing user experiences in advanced communication systems. Several challenges are involved in the quality assessment process, including diverse characteristics of multimedia content such as image, video, VR, point cloud, mesh, multimodality, etc., and complex distortion scenarios as well as viewing conditions. The tutorial first presents a detailed overview of principles and methods for perceptually inspired visual quality assessment. This includes both subjective methods, where users directly rate their experience, and objective methods, where algorithms predict human perception based on measurable factors such as bitrate, frame rate, and compression levels. Based on the basics of perceptually inspired visual quality assessment, metrics for different multimedia data are then introduced. Apart from the traditional image and video, immersive multimedia and AI-generated content will also be involved.

Posted in ATHENA | Comments Off on ACM MM’25 Tutorial: Perceptually Inspired Visual Quality Assessment in Multimedia Communication

End-to-End Learning-based Video Streaming Enhancement Pipeline: A Generative AI Approach

ACM 35th Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV’25)

31 March – 3 April 2025 | Stellenbosch, South Africa

[PDF]

Emanuele Artioli (Alpen-Adria Universität Klagenfurt, Austria), Farzad Tashtarian (Alpen-Adria Universität Klagenfurt, Austria), Christian Timmerer (Alpen-Adria Universität Klagenfurt, Austria)

Abstract: The primary challenge of video streaming is to balance high video quality with smooth playback. Traditional codecs are well tuned for this trade-off, yet their inability to use context means they must encode the entire video data and transmit it to the client.
This paper introduces ELVIS (End-to-end Learning-based Video Streaming Enhancement Pipeline), an end-to-end architecture that combines server-side encoding optimizations with client-side generative in-painting to remove and reconstruct redundant video data. Its modular design allows ELVIS to integrate different codecs, in-painting models, and quality metrics, making it adaptable to future innovations.
Our results show that current technologies achieve improvements of up to 11 VMAF points over baseline benchmarks, though challenges remain for real-time applications due to computational demands. ELVIS represents a foundational step toward incorporating generative AI into video streaming pipelines, enabling higher quality experiences without increased bandwidth requirements.
By leveraging generative AI, we aim to develop a client-side tool, to incorporate in a dedicated video streaming player, that combines the accessibility of multilingual dubbing with the authenticity of the original speaker’s performance, effectively allowing a single actor to deliver their voice in any language. To the best of our knowledge, no current streaming system can capture the speaker’s unique voice or emotional tone.

Index Terms— HTTP adaptive streaming, Generative AI, End-to-end architecture, Quality of Experience.

Posted in ATHENA | Comments Off on End-to-End Learning-based Video Streaming Enhancement Pipeline: A Generative AI Approach

The 2nd ACM MM Workshop on Multimedia Computing for Health and Medicine

The 2nd ACM MM Workshop on Multimedia Computing for Health and Medicine

Website

In health and medicine, an immense amount of data is being generated by distributed sensors and cameras, as well as multimodal digital health platforms that support multimedia, such as audio, video, image, 3D geometry, and text. The availability of such multimedia data from medical devices and digital record systems has greatly increased the potential for automated diagnosis. The past several years have witnessed an explosion of interest, and a dizzyingly fast development, in computer-aided medical investigations using MRI, CT, X-rays, images, point clouds, etc. This proposed workshop focuses on various multimedia computing techniques (including mobile solutions and hardware solutions) for health and medicine, which targets real-world data/problems in healthcare, involves a large number of stakeholders, and is closely connected with people’s health.

Posted in ATHENA | Comments Off on The 2nd ACM MM Workshop on Multimedia Computing for Health and Medicine

ACM TOMM: Convex Hull Prediction Methods for Bitrate Ladder Construction: Design, Evaluation, and Comparison

Convex Hull Prediction Methods for Bitrate Ladder Construction: Design, Evaluation, and Comparison

ACM Transactions on Multimedia Computing Communications and Applications (ACM TOMM)

[PDF]

Ahmed Telili (INSA, Rennes, France),  Wassim Hamidouce (INSA, Rennes, France), Hadi Amirpour (Alpen-Adria-Universität Klagenfurt), Sid Ahmed Fezza (INPTIC, Algeira), Christian Timmerer (Alpen-Adria-Universität Klagenfurt), and Luce Morin (INSA, Rennes, France)

Abstract:

HTTP adaptive streaming (HAS ) has emerged as a prevalent approach for over-the-top (OTT ) video streaming services due to its ability to deliver a seamless user experience. A fundamental component of HAS is the bitrate ladder, which comprises a set of encoding parameters (e.g., bitrate-resolution pairs) used to encode the source video into multiple representations. This adaptive bitrate ladder enables the client’s video player to dynamically adjust the quality of the video stream in real-time based on fluctuations in network conditions, ensuring uninterrupted playback by selecting the most suitable representation for the available bandwidth. The most straightforward approach involves using a fixed bitrate ladder for all videos, consisting of pre-determined bitrate-resolution pairs known as one-size-fits-all. Conversely, the most reliable technique relies on intensively encoding all resolutions over a wide range of bitrates to build the convex hull, thereby optimizing the bitrate ladder by selecting the representations from the convex hull for each specific video. Several techniques have been proposed to predict content-based ladders without performing a costly, exhaustive search encoding. This paper provides a comprehensive review of various convex hull prediction methods, including both conventional and learning-based approaches. Furthermore, we conduct a benchmark study of several handcrafted- and deep learning ( DL )-based approaches for predicting content-optimized convex hulls across multiple codec settings. The considered methods are evaluated on our proposed large-scale dataset, which includes 300 UHD video shots encoded with software and hardware encoders using three state-of-the-art video standards, including AVC /H.264, HEVC /H.265, and VVC /H.266, at various bitrate points. Our analysis provides valuable insights and establishes baseline performance for future research in this field.
Dataset URL: https://nasext-vaader.insa-rennes.fr/ietr-vaader/datasets/br_ladder

Posted in ATHENA | Comments Off on ACM TOMM: Convex Hull Prediction Methods for Bitrate Ladder Construction: Design, Evaluation, and Comparison