GenStream: Semantic Streaming Framework for Generative
Reconstruction of Human-centric Media

ABSTRACT

Video streaming dominates global internet traffic, yet conventional
pipelines remain inefficient for structured, human-centric content
such as sports, performance, or interactive media. Standard codecs
re-encode entire frames, foreground and background alike, treat-
ing all pixels uniformly and ignoring the semantic structure of the
scene. This leads to significant bandwidth waste, particularly in
scenarios where backgrounds are static and motion is constrained
to a few salient actors. We introduce GenStream, a semantic stream-
ing framework that replaces dense video frames with compact,
structured metadata. Instead of transmitting pixels, GenStream en-
codes each scene as a combination of skeletal keypoints, camera
viewpoint parameters, and a static 3D background model. These
elements are transmitted to the client, where a generative model re-
constructs photorealistic human figures and composites them into
the 3D scene from the original viewpoint. This paradigm enables
extreme compression, achieving over 99.9% bandwidth reduction
compared to HEVC. We partially validate GenStream on Olympic
figure skating footage and demonstrate potential high perceptual
fidelity under minimal data. Looking forward, GenStream opens
new directions in volumetric avatar synthesis, canonical 3D actor
fusion across views, personalized and immersive viewing experi-
ences at arbitrary viewpoints, and lightweight scene reconstruction,
laying the groundwork for scalable, intelligent streaming in the
post-codec era.

1 INTRODUCTION

Video streaming plays a pivotal role in digital media consumption
and accounts for the majority of global Internet data traffic [1].
Specifically, major live international events such as the Olympic
Games attract millions of viewers worldwide, generating massive
volumes of data as high-definition video streams are delivered simul-
taneously to heterogeneous devices [2]. With the growing appetite
for immersive and interactive content, the limitations of existing
video streaming paradigms are becoming increasingly evident.

HTTP Adaptive Streaming (HAS) has become the de facto stan-
dard for video delivery over the Internet, dynamically adjusting
video quality based on real-time network conditions [3, 4]. In HAS,
video content is partitioned into segments of fixed duration (e.g., 2
to 10 seconds [5]), each encoded independently using a video codec
such as Advanced Video Coding (AVC) [6] or its successor, High
Efficiency Video Coding (HEVC) [7]. To support adaptive switching,
each segment is encoded into several quality representations, where
each representation is defined by a specific bitrate and resolution
pair, collectively referred to as the bitrate ladder.

While modern codecs are effective at reducing redundancy through
intra-frame (spatial) and inter-frame (temporal) compression [6, 7],
they operate under strict constraints: each segment is indepen-
dently encoded and, hence, can only reference frames within its
temporal window, limiting inter-frame prediction to short-term de-
pendencies [8]. This means that when long-term repetitive patterns

occur, the codec repeatedly re-encodes similar content, failing to
capitalize on the inherent structural redundancy [9].

A compelling example of such inefficiency can be observed in
sporting events, where athletes move against a generally static or
slowly evolving background, such as a stadium, lighting fixtures,
and surrounding audience. Despite the structural consistency of
such scenes, conventional codecs repeatedly re-encode the same
portions of background every time the camera passes over them.
This redundancy issue is further exacerbated in multi-camera pro-
ductions, where identical scenes captured from different viewpoints
are encoded independently, squandering opportunities to exploit
cross-view redundancy [10, 11].

To address these inefficiencies, we propose GenStream, a vision-
ary system designed for live streaming that redefines how such
events can be streamed and experienced. Instead of transmitting
full video frames, GenStream captures skeleton-based keypoints
(e.g., body landmarks) of the performers with their relative bound-
ing box and sends this compact representation to the client. The
server then tackles a critical challenge: estimating the original cam-
era viewpoint for each frame, which is essential for replicating the
broadcast viewpoint. This pose, along with the performer keypoints,
is sent to the client. At the client side, a second core challenge arises:
generating a photorealistic rendering of the performer from sparse
input using a generative model such as a conditional Generative
Adversatial Network (cGAN) [12] or diffusion model [13]. The syn-
thesized figure is then composited into a pre-scanned 3D model of
the venue, and rendered from the provided viewpoint to faithfully
recreate the original scene.

This paradigm shift offers dramatically reduced bandwidth usage,
and support for personalized viewing experiences, such as a stylistic
customization of the performers or points of view that differ from
what the real cameras are capturing.

According to our preliminary results, GenStream can reduce the
required live streaming bitrate to less than 1% that of a baseline
HEVC-encoded video, assuming the 3D representation of the venue
and generative model weights are pre-distributed to clients. This
impressive reduction in bandwidth enables a stall-free streaming
experience at the massive scale required for worldwide sporting
events, even under constrained or fluctuating network conditions.
At the same time, GenStream preserves high visual fidelity through
client-side synthesis, albeit at the expense of increased computa-
tional complexity.

2 RELATED WORK

2.1 Traditional Video Streaming and Codecs

Video streaming today is predominantly driven by standard proto-
cols such as HTTP Adaptive Streaming (HAS) [14], which underlie
systems like HLS [15] and MPEG-DASH [16]. These methods di-
vide content into short segments and offer multiple quality tiers to
allow the client to adapt playback to current network conditions.



submission to ACM Multimedia 2025, April 11, 2025

Combined with client-side adaptive bitrate (ABR) logic, these sys-
tems ensure playback continuity and have been highly successful in
scaling video delivery across heterogeneous networks and devices.

Compression in these pipelines is handled by increasingly so-
phisticated codecs, such as AV1 [17] and VVC (H.266) [18], which
improve upon earlier standards in terms of compression efficiency,
often achieving up to 50% savings. These advances are achieved
through better motion prediction, transform coding, and entropy
models. However, such gains come at a significant computational
cost, especially on the encoder side, with high-resolution or real-
time use cases facing increased energy and latency burdens [17, 18].

Despite decades of progress, traditional codecs treat all pixels
equally and operate at the block level, agnostic to scene semantics.
As aresult, even small improvements in compression now require
disproportionate increases in complexity, yielding diminishing re-
turns for practical deployment.

2.2 Emerging Architectures for Video Encoding

To address some of the inefficiencies of standard codecs, recent
research has explored novel encoding paradigms that move beyond
traditional block-based compression. One approach augments ex-
isting codecs with machine learning components to improve rate
control, motion estimation, or mode decisions [19, 20]. These tech-
niques often integrate seamlessly with legacy pipelines, but remain
bound by the structure of the original codec.

A more radical line of work proposes fully neural video com-
pression systems, in which residuals and motion fields are learned
end-to-end by deep networks [20, 21]. While promising in terms of
visual quality, these models are often too computationally intensive
for real-time use or deployment on resource-limited clients.

Complementary to these efforts, other works focus on client-side
enhancement techniques that improve the subjective quality of the
received video. Methods such as frame interpolation [22, 23] and
super-resolution [24-26] can increase perceived temporal or spatial
fidelity without increasing the transmitted bitrate.

More recently, data-driven representations like Neural Radiance
Fields (NeRF) [27] and 3D Gaussian Splatting (3DGS) [28] have
opened new possibilities for compact and continuous scene rep-
resentations. While typically used for static scene modeling, they
provide new pathways for transmitting visual content as a struc-
tured function of space and viewpoint.

However, these emerging techniques all share a common trait:
they treat video as a dense signal composed of low-level features
such as pixels, motion vectors, or residuals. They do not leverage
higher-level understanding of scene composition, such as objects,
or actions, and thus miss a key opportunity for more structured
and efficient encoding.

2.3 Semantic Streaming and Object-Centric
Representations

Semantic video streaming shifts the encoding focus from raw pixels
to meaningful scene components [29]. This perspective recognizes
that not all regions of a video are equally important: agents (such as
humans, vehicles, or other active foreground elements) are typically
of greater perceptual and narrative significance than background
elements. By decoupling foreground and background and encoding

them differently, streaming systems can better match perceptual
salience to bitrate allocation.

To enable semantic encoding, a variety of tools have emerged.
Object detection and tracking algorithms allow for persistent iden-
tification of foreground elements across time [30, 31]. Instance
segmentation networks can further delineate objects from their sur-
roundings, enabling region-specific treatment during encoding [32].
These components form the foundation for object-centric video
understanding.

While these techniques have seen some integration in video
conferencing systems, where avatar-based transmission and back-
ground substitution are common, their use remains tightly scoped to
face-to-face communication scenarios. In broader video streaming,
particularly for entertainment, sports, or interactive media, seman-
tic approaches are largely absent. The vast majority of streaming
systems continue to transmit raw pixels rather than structured
representations, leaving the potential of object-level encoding un-
derutilized.

2.4 Generative Reconstruction

Generative models have recently demonstrated remarkable capa-
bilities in synthesizing photorealistic video content from abstract
inputs such as pose skeletons, semantic maps, or depth [33, 34].
This progress has been fueled by advances in both image and video
generation, ranging from GAN-based architectures to diffusion
models, and has enabled applications in human reanimation, style
transfer, and controllable video generation [12, 13, 25, 35].

In the context of streaming, these models offer an opportunity to
decouple the representation of motion and appearance. Instead of
transmitting dense pixel data, a system may instead send a sparse
representation, such as 2D keypoints or depth maps, and rely on a
generative model at the client to reconstruct the full image content.
This approach opens the door to radically more efficient pipelines.

Early explorations into this idea include ELVIS [36], which uses
semantic segmentation to identify low-priority regions of the video,
removes them prior to network transmission, and performs genera-
tive inpainting at the client side to recreate them. While effective
at avoiding the transmission of unimportant areas, ELVIS still re-
lies on traditional encoding for important foreground objects and
does not offer a fully object-based or motion-driven reconstruction
strategy.

To overcome these limitations and develop a truly semantic
streaming system, future efforts can draw from advances in camera
motion estimation and 3D scene reconstruction. Accurate tracking
of camera viewpoint [37-39] can enable dynamic viewpoint control
on the client. Meanwhile, neural scene representations allow the
static background to be precomputed and encoded efficiently as
a view-consistent 3D asset. When combined with semantic fore-
ground representations, these modalities enable a modular and
compositional approach to streaming where agents, environments,
and motion can each be transmitted and reconstructed indepen-
dently.

3 PROBLEM DESCRIPTION AND MOTIVATION

To evaluate the effectiveness of our approach in terms of video
quality and bandwidth reduction, we first establish a baseline by
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Figure 1: Conceptual architecture of GenStream.

measuring the performance of current state-of-the-art codecs un-
der constrained bandwidth conditions. We apply this comparison
to a representative 1080p video scene from an artistic ice skating
competition, recorded at a frame rate of 30 fps and 50 s in duration.
As our reference codec, we select the High-Efficiency Video Codec
(HEVC) [7] due to its widespread adoption [40] and high compres-
sion efficiency [7]. The target video [41] is encoded at a resolution
of 1920x 1080 with a bitrate of 5.8 Mbps.

Artistic ice skating competitions present a compelling opportu-
nity for compression via semantic and structural decomposition. A
typical broadcast sequence features: (i) a static or slowly evolving
background (the ice rink, boards, and stadium interior), and (ii) one
or two foreground objects of interest (an individual skater or a
couple of skaters).

Rather than encoding full video frames pixel-by-pixel, the scene
can be decomposed into a persistent 3D background and a set of
dynamic pose-driven elements. Therefore, assuming we possess
the 3D point cloud of the stadium, to reconstruct the scene, we
must first estimate the camera viewpoint T from the input video
scene [42]:

T=

OE :] c R4X4

Here, R € R3*3 is the rotation matrix, and t € R3 is the camera
center in world coordinates. The bottom row [0 1] makes it a 4x4
homogeneous transformation matrix.

This 3D scene needs to be rendered at the client side within the
Unity [43] framework. Since Unity represents any rotation via a
quaternion q € R*, which represents a mathematically convenient
alternative to the euler angle representation, we can convert R to q
using quaternion algebra [44]. This way, we reduce the required
values to represent T from 12 (3 for t and 9 for R) to 7 (3 for t and 4
for q). With the camera viewpoint T and the 3D point cloud of the
stadium, the background can be easily reconstructed.

The foreground, instead, includes dynamic objects, i.e., the skaters,
that can be cropped out of the captured 2D video, delivered as sep-
arate streams to the clients, and overlaid in the camera view based
on their original position. Although it requires less bandwidth, this
approach presents several technical challenges. Since the bound-
ing box used to extract each skater varies over time, the resulting

cropped figures would have non-uniform spatial resolutions, com-
plicating real-time rendering and synchronization on the client
side. Padding cropped frames with black pixels to a fixed resolution
is bandwidth-inefficient, similar to codec overhead from aligning
with fixed-size coding blocks [45]. Transmitting each crop as an
independent image sequence is even worse, as it forgoes inter-
frame compression gains [46]. These inefficiencies led us to replace
pixel-based representations with a minimal structured alternative.
Rather than transmitting full pixel-based representations of
the skaters, we transmit a compact set of skeletal keypoints S =
{(x;y) | x < W;y < H}, where W and H denote the width and
height of the video frame, respectively. These keypoints efficiently
encode the motion and structural pose of the skaters over time. The
total number V of values necessary to reconstruct the scene is:

V=02x|S|+|B|+|T|) x FXL (1)

where 8 is the per-frame set of values representing the bounding

box of the skater, |T| is the minimum number of parameters to

represent the camera viewpoint T, F is the frame rate of the video
in frames per second, and L is the length of the video in seconds.

It is worth noting that the generative model can be transmitted
to the client before the stream takes place and, therefore, does not
contribute to the streaming bandwidth.

Depending on the resolution of the input video, values in 8 and
S can be efficiently represented using 11 bit (1920x1080) or 12 bit
(3840 2160) integers. For the camera viewpoint T, we consider
32 bit floating-point values.

The motion of each ice skater throughout the whole video, en-
coded as 17 keypoints [34], requires 64 kB (plus less than 4 kB for
the bounding boxes), while camera viewpoints require additional
42 kB. The total data transmitted is, therefore, approximately 110 kB,
corresponding to a 99.9% reduction in bandwidth compared to the
original 134 MB HEVC-encoded video.

Despite this impressive compression, perceptual coherence is
preserved. The reconstructed stadium maintains spatial realism,
while the skaters’ poses and trajectories are accurately rendered
in appearance and timing. Although conventional quality metrics
like VMAF may decline due to the lack of pixel-level fidelity, the
semantic content and visual plausibility remain intact, especially
for downstream use cases such as highlight replays, performance
analysis, or live streaming in low-bandwidth environments.
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These insights form the basis of our system, GenStream, a percep-
tually aware, bandwidth-efficient streaming architecture tailored
for structured, domain-specific content like artistic ice skating com-
petitions.

4 SYSTEM DESIGN

GenStream proposes a radical departure from conventional video
pipelines by eliminating pixel-level redundancy at the server and
instead transmitting only a sparse, generative codebook of the
scene. The system rethinks the encoding of human-centric motion
and background information as two disjoint but complementary
generative tasks: appearance reconstruction and spatiotemporal
placement.

Unlike conventional codecs or even object-aware compression
pipelines, GenStream treats video as a generative instruction set
rather than a sequence of images. At its core is a hybrid pipeline that
combines object understanding, 3D scene modeling, and generative
synthesis. Figure 1 illustrates the architecture of GenStream, broken
down into its server-side and client-side pipelines.

4.1 Server-side GenStream

The server-side component transforms raw videos into a set of
semantically meaningful layers: dynamic object keypoints, back-
ground images, and camera points of view. We describe four key
stages below:

Salient Actor Extraction. The pipeline begins by identifying and
segmenting salient actors from each frame. This is accomplished
via Artificial Intelligence (AI) through object detection and instance
segmentation models.

To lower the chance of misclassifying a spectator for the ac-
tor, we segment only the largest detected human in each frame.
This produces an alpha mask that is used to construct two com-
plementary Red Green Blue Alpha (RGBA) layers per frame: (i) A
foreground image containing only the actor, and (ii) a background
image with the actor masked out.

The segmentation step acts as an attention filter that reduces
each frame to its most perceptually critical content, discarding
clutter, crowds, and occlusions.

Keypoint-based Pose Encoding. For each segmented actor, Gen-
Stream extracts high-resolution keypoint trajectories across time.
These form the structured motion encoding that guides generative
synthesis on the client side.

Our system uses state-of-the-art pose estimation models to track
anatomical keypoints of the actor, and encodes them into a temporal
stream. The keypoints serve as lightweight motion blueprints for
actor synthesis downstream.

Unlike traditional video codecs that preserve every pixel, Gen-
Stream transmits only these skeletal pose traces, implicitly entrust-
ing the client to fill in visual details through generative inference.

Background Inpainting and 3D Reconstruction. The server assembles
a clean, actor-free background model from the masked RGBA back-
ground layers. Regions previously occluded by actors are inpainted
using context-aware algorithms to restore full-frame realism and
aid the Structure-from-Motion (SfM) algorithm to infer camera

viewpoint. These poses allow the client to re-render dynamic actors
within a coherent 3D scene.

This use of background-only frames to drive global camera un-
derstanding is a key innovation of GenStream: it decouples the
spatiotemporal understanding of scene layout from the actors them-
selves, enabling more robust reconstructions.

It is important to note that this step becomes essential when the
3D model of the venue and camera viewpoints are not provided by
the competition organizers apriori.

Encoding for Transmission. Finally, the server packages actor key-
points and camera viewpoints coordinates into a single metadata
file. The structured nature of these coordinates allows for a highly
optimized compression logic, resulting in massive bitrate gains
when compared to the traditional block-based video encoding.

4.2 Client-side GenStream

The client-side of GenStream is responsible for converting the struc-
tured transmission into a visually plausible, temporally coherent
video. Instead of decoding pixels, it interprets abstract control rep-
resentations (keypoints + poses) and re-renders the video using a
generative prior. Three key modules are involved:

Skeleton-Driven Actor Reconstruction. The received keypoint stream
is decoded into a full-body actor reconstruction via a conditional
generative model.

This step synthesizes full-frame RGB actors at arbitrary resolu-
tions and quality levels, depending on the client’s capabilities and
time constraints.

Viewpoint-Aware Scene Recomposition. Using the 3D camera view-
points and original spatial metadata, the client reinserts each syn-
thesized actor into the 3D background, which can be a custom-made
representation sent to the client prior to the streaming event, or
extracted by the same algorithm that inferred the camera view-
points. The composition is performed frame-by-frame, guided by
the temporal evolution of the keypoints and viewpoint metadata.

Frame Synthesis and Playback. The final video is reconstructed
by compositing synthesized actors into the 3D background. This
reconstructed sequence is passed to the video player for smooth,
low-latency playback.

By relying on learned priors and sparse representations, Gen-
Stream is robust to bandwidth drops, jitter, or loss of intermediate
frames. It behaves more like a generative animation system than a
classic video streaming system.

4.3 Design Summary

In summary, GenStream replaces blocks of pixels with poses, shift-
ing the core payload from image data to motion semantics, separates
actor and background processing, enabling independent treatment
and optimization of each layer, and uses client-side generative mod-
els to recreate known figures, dramatically reducing the required
bandwidth.

This design rethinks the video stack from first principles, offering
a blueprint for streaming systems where generative intelligence,
not bitrate, defines visual quality.
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5 IMPLEMENTATION

Content. To validate our approach, we applied the system to a
dataset comprising more than 40 000 frames grouped in 48 scenes
with duration ranging 9s to 55 s extracted from four figure skat-
ing performances at 30 fps and 1080p resolution [47]. All videos
belong to the 2018 Pyongchang Olympic Games, and thus share key
characteristics, including: (i) the same ice rink background with
predominantly stationary objects and spectators, (ii) one figure
skater actively moving in the center of the ice rink, and (iii) a set
of cameras, all following the skater from different points of the ice
rink’s lower ring.

Setup. All processing is performed on an Ubuntu 20.04 LTS server
equipped with an Intel Xeon Gold 5218 CPU (64 cores, 2.30 GHz)
and an NVIDIA Quadro RTX 8000 GPU with 48 GB of memory. The
full system is packaged into two Docker [48] containers: one for the
server-side pipeline and another for Unity-based client rendering.
The pipeline is implemented in Python using OpenCV, PyTorch,
and external tools like COLMAP [49], with Unity handling the
rendering pipeline on the client side.

Several components of GenStream are fully implemented and
tested independently, including actor segmentation, keypoint ex-
traction, inpainting, and data export to 3D scenes. Others, such as
camera viewpoint recovery, pose novel challenges and are currently
under scrutiny.

Actor Segmentation and Frame Decomposition. Each frame captured
by the camera is parsed using YOLOv11 [32], which detects all indi-
viduals present. Among them, we retain only the largest bounding
box to discard bystanders or referees. This bounding box is passed
to Segment Anything Model 2 (SAM 2) [50], which produces a fine
segmentation mask, as shown in Figure 2 (Original Skater). SAM 2
is a high precision and reliability segmentation model. However, its
complexity does not permit real time performance. Alternatively,
the detection and segmentation can be performed in one pass by
YOLOv11. This approach is much faster, and compatible with real-
time live processing, but its output quality is not as robust.

We use the mask to generate, for each frame: (i) actor.png: the
actor extracted from the scene, and (ii) background.png: the frame
with the actor region masked. The mask is used to add transparency,
resulting in RGBA images that clearly differentiate the portions of
the frame that belong to the actor and the background, enabling
actor-specific compression and background reconstruction.

Keypoint extraction. After detection and segmentation, GenStream
proceeds to a pose estimation stage. This step aims to convert each
segmented actor into a structured representation of keypoints that
compactly captures their motion and posture over time. Since the
bounding box of the primary actor has already been computed
in the segmentation phase, keypoint extraction is performed in
parallel, enabling efficient processing.

To extract keypoints from each actor, we compare three methods
with decreasing spatial density: a Canny edge-based filter [51], a
grid sampling filter, and a YOLOv11 Pose-based skeleton detec-
tor [52]. The Canny filter highlights contours by detecting high-
gradient edges, while the grid filter overlays a regular grid on the
edge map and selects representative points from high-detail regions,
marking a square’s center when it contains sufficient edge pixels.
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The YOLOv11 Pose model estimates 17 anatomical landmarks di-
rectly and connects them into a human skeleton using predefined
edges. All three methods, shown in Figure 2, are applied to the
segmented RGBA image of the actor, ensuring no background inter-
ference. Since all approaches yield comparable perceptual quality
in downstream tasks, we select the YOLO-based method due to its
compact representation and lower bandwidth requirements.

Background inpainting. To enable a clearer view synthesis, im-
age inpainting is used to dynamically fill regions of the back-
ground images where actors have been segmented out. Tools such
as OpenCV’s Telea [53] or Stable Diffusion [13] are used depending
on available computational resources. The output is a sequence of
image files without foreground actors, to aid the camera viewpoint
estimation phase. While inpainting may introduce some inconsis-
tency across frames, leaving dynamic foreground actors in place
typically leads to more severe errors in COLMAP’s reconstruction,
as it assumes a static scene. Removing the actors and filling their
regions, even imperfectly, helps reduce false feature matches and
improve the accuracy of the background structure estimation.

3D Ice Rink Modeling. We manually reconstructed an Olympic ice
rink in Unity to serve as the scene’s geometric and visual refer-
ence. This includes accurately placed lines, lighting, and reflection
properties to match typical broadcast footage (see Fig. 3).

Camera Viewpoint Recovery: Challenges and Approaches (Partially
Implemented). Correctly recovering the camera parameters for each
video remains one of the most critical and technically demanding
components of GenStream. We explore two alternative approaches:

(i) COLMAP-based 3D Reconstruction (Partially Imple-
mented) We use COLMAP to generate a sparse point cloud
of the static scene and estimate the per-frame camera in-
trinsics and extrinsics. Figure 4 shows a 2D projection of a
reconstruction result. While COLMAP succeeds in gener-
ating plausible camera trajectories, integration with Unity
remains incomplete. Converting COLMAP’s coordinate sys-
tem and focal length parameters into Unity’s camera model
introduces geometric inconsistencies that still need to be re-
solved. Furthermore, to maintain the significant bandwidth
reduction that GenStream proposes, COLMAP features ex-
tracted from different video scenes need to be fused together
into a complete and realistic point cloud model, and sent to
the client before the live even takes place. The origin of such
video scenes may be the owner of the background stadium,
or previous scenes that have been transmitted via regular
video streaming.

(ii) Differentiable Camera Viewpoint Optimization (Par-
tially Implemented) Another explored approach involves
directly optimizing camera parameters by rendering the 3D
scene from a randomly initialized camera angle, capturing
the resulting view, and comparing it to the inpainted back-
ground from the original video frame. The difference be-
tween the rendered and inpainted images serves as a loss
function, which is minimized through iterative optimiza-
tion to estimate the correct camera viewpoint. Efforts in this
direction have raised many challenges, both in terms of im-
plementation structure and resulting quality. Furthermore,
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Figure 2: Visual comparison between original frame and various input maps and methods. All images are 1024x1024.

Figure 3: Qualitative comparison between original frame
(left) and rendering of the 3D model with applied skater
(right).
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Figure 4: COLMAP generated point cloud of one scene, com-
plete of camera view intrinsics and extrinsics, figure skater
in foreground, and ice rink in the background.

the computation required for such an optimization is not
compatible with live streaming. To address this last chal-
lenge, we implemented a more efficient solution: we perform
the full optimization only for the first frame of each scene,
then use a SIFT-based relative pose estimation [54] to propa-
gate camera viewpoints to subsequent frames by comparing
each one to its immediate predecessor. This significantly
reduces the overall computational burden while maintaining
adequate tracking accuracy.

Data export (Partially Implemented. Finally, the extracted data, com-
prising actor bounding boxes and keypoints, and camera viewpoints
(or optionally COLMAP’s complete scene information), is saved to
a CSV file and then encoded for transmission.

With regards to keypoints transmission, ach coordinate is en-
coded as a 11-bit unsigned integer, sufficient to represent pixel
positions within a 1080p resolution frame (up to 1920 pixels). Cru-
cially, because the number and ordering of keypoints are fixed and
known in advance, each segment of the bitstream corresponds to a
specific coordinate of a specific object in a deterministic way. For
example, the first 11 bits always encode the X-coordinate of the first
keypoint, the next 11 bits the corresponding Y-coordinate, and so
on. This layout removes the need for additional metadata, enabling
both tight compression and extremely fast parsing on the client
side. If an actor is not detected in a particular frame, a sentinel
control value (2000, greater than 1920 and thus outside the possible
coordinate range) is inserted in place of the missing coordinates.
This allows the client to gracefully handle missed detections while
maintaining alignment with the expected bitstream format. How-
ever, to develop such a tight compression scheme for COLMAP’s
features, it is required to solve the related challenges mentioned
previously.

It is worth noting that the compressed data is delivered to the
client at intervals, aligned with the target latency requirements of
live video streaming applications.

Generative Model Training Setup. To generate realistic figure skater
images from skeleton keypoints, we train a cGAN which receives
in input paired image data, where each sample consists of two
components: a reconstructed image of the person based on their
keypoints, and the corresponding ground truth image. These two
images, originally sized at either 128x128, 256x256, or 1024x1024, are
concatenated to form paired input images of size 256x128, 512x256,
and 20481024, respectively. The input images, split into 80 % for
training and 20 % for testing, are augmented using random resizing,
cropping, and mirroring to enhance robustness.

Client-Side Reconstruction. GenStream’s client-side rendering is im-
plemented in Unity and currently uses the manually constructed 3D
model of the Olympic ice rink shown in Figure 3 as its background
rendering approach. To complete the synthetic view, the generated
figure skater is placed at the correct spatial location along the cam-
era’s optical axis, ensuring that their size and position match the
original video.
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In our current implementation, camera parameters are inferred
manually to approximate the original view. Using these values,
we can overlay the generated figure skater and achieve a visually
plausible frame composition on top of the 3D background. However,
this manual solution is clearly not scalable, and useful only for
qualitative presentations. Once this challenge is solved, the Unity
renderer is already set up to accept per-frame camera values.

6 CONCLUSION

GenStream introduces a radically different paradigm for video
streaming, one that replaces dense pixel transmission with high-
level semantic instructions that guide client-side generative recon-
struction. By transmitting only sparse skeleton-based keypoints
and camera viewpoint metadata, GenStream achieves a bandwidth
reduction of over 99.9% compared to conventional HEVC encoding,
while preserving essential perceptual cues for immersive viewing.
This system provides a blueprint for a new generation of streaming
architectures that prioritize semantic content over pixel fidelity.
However, several open challenges remain before GenStream can
reach its full potential.

A key future direction is the evolution from 2D sprite-like ren-
derings to fully volumetric, viewpoint-consistent representations.
Instead of compositing a 2D actor into a 3D scene, we envision
modeling the actor as a moving 3D skeleton driving a volumet-
ric avatar. This would allow the system to support free-viewpoint
video synthesis, enabling clients to explore scenes from arbitrary
perspectives, even those not originally captured by any camera.
Realizing this vision introduces two critical challenges. First, it
requires the fusion of multiple partial point clouds captured from
different video sequences into a canonical 3D representation of
the actor and background. Second, it demands lifting 2D skele-
tons to reliable 3D joint configurations in single-camera scenarios.
These challenges intersect fields such as multi-scene registration,
3D human reconstruction, and sparse generative modeling.

Furthermore, while our current implementation uses Unity for
client-side rendering, future deployments might benefit from alter-
native engines or custom viewers that better align with emerging
hardware and web standards. Importantly, GenStream remains
renderer-agnostic; any tool capable of interpreting the structured
metadata and synthesizing scenes from it could serve as the play-
back environment.

Another important avenue lies in extending GenStream beyond
the controlled setting of figure skating to more complex, multi-
agent scenes such as football or gymnastics. These scenarios involve
richer interactions, dynamic camera work, and greater occlusion,
each posing new demands on segmentation, viewpoint estimation,
and generative synthesis.

Finally, we note that background modeling using COLMAP or
similar SfM tools requires careful fusion of features from multiple
scenes to build a unified point cloud representation. These features
can originate from the event organizer’s asset library or be extracted
from previously streamed footage. Solving this fusion problem
efficiently and compactly is crucial for pre-distributing 3D venue
models to clients.

GenStream is a first step toward a future where semantic un-
derstanding and generative capabilities replace brute-force video
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transmission. By offloading reconstruction to powerful client-side
models and transmitting only what truly matters, it offers a scal-
able, perceptually meaningful approach to media delivery for the
post-codec era.
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