16th International Conference on Signal Image Technology & Internet based Systems
October 19-21, 2022 | Dijon, France
[PDF]
Babak Taraghi (AAU, Austria), Selina Zoë Haack (AAU, Austria), and Christian Timmerer (AAU, Austria)
Abstract: HTTP Adaptive Streaming (HAS) is nowadays a popular solution for multimedia delivery. The novelty of HAS lies in the possibility of continuously adapting the streaming session to current network conditions, facilitated by Adaptive Bitrate (ABR) algorithms. Various popular streaming and Video on Demand services such as Netflix, Amazon Prime Video, and Twitch use this method. Given this broad consumer base, ABR algorithms continuously improve to increase user satisfaction. The insights for these improvements are, among others, gathered within the research area of Quality of Experience (QoE). Within this field, various researchers have dedicated their works to identifying potential impairments and testing their impact on viewers’ QoE. Two frequently discussed visual impairments influencing QoE are stalling events and quality switches. So far, it is commonly assumed that those stalling events have the worst impact on QoE. This paper challenged this belief and reviewed this assumption by comparing stalling events with multiple quality and high amplitude quality switches. Two subjective studies were conducted. During the first subjective study, participants received a monetary incentive, while the second subjective study was carried out with volunteers. The statistical analysis demonstrated that stalling events do not result in the worst degradation of QoE. These findings suggest that a reevaluation of the effect of stalling events in QoE research is needed. Therefore, these findings may be used for further research and to improve current adaptation strategies in ABR algorithms.


Hadi Amirpour is a postdoctoral researcher at the University of Klagenfurt. He received his B.Sc. degrees in Electrical and Biomedical Engineering, and he pursued his M.Sc. in Electrical Engineering. He got his Ph.D. in computer science from the University of Klagenfurt in 2022. He was involved in the project EmergIMG, a Portuguese consortium on emerging imaging technologies, funded by the Portuguese funding agency and H2020. Currently, he is working on the ATHENA project in cooperation with its industry partner Bitmovin. His research interests are image processing and compression, video processing and compression, quality of assessment, emerging 3D imaging technology, and medical image analysis.

The secret data is embedded in the multiple most significant bits of the encoded difference. Experimental results show that the embedding capacity of the proposed algorithm is improved compared with the state-of-the-art algorithm.











