IEEE VCIP 2023: International Conference on Visual Communications and Image Processing
4 – 7 December 2023 | Jeju, Korea
Vignesh V Menon (Alpen-Adria-Universität Klagenfurt), Reza Farahani (Alpen-Adria-Universität Klagenfurt), Prajit T Rajendran (Universite Paris-Saclay),
Samira Afzal (Alpen-Adria-Universität Klagenfurt), Klaus Schoeffmann (Alpen-Adria-Universität Klagenfurt), Christian Timmerer (Alpen-Adria-Universität Klagenfurt)
Abstract: With the emergence of multiple modern video codecs, streaming service providers are forced to encode, store, and transmit bitrate ladders of multiple codecs separately, consequently suffering from additional energy costs for encoding, storage, and transmission.
To tackle this issue, we introduce an online energy-efficient Multi-Codec Bitrate ladder Estimation scheme (MCBE) for adaptive video streaming applications. In MCBE, quality representations within the bitrate ladder of new-generation codecs (e.g., HEVC, AV1) that lie below the predicted rate-distortion curve of the AVC codec are removed. Moreover, perceptual redundancy between representations of the bitrate ladders of the considered codecs is also minimized based on a Just Noticeable Difference (JND) threshold. Therefore, random forest-based models predict the VMAF of bitrate ladder representations of each codec. In a live streaming session where all clients support the decoding of AVC, HEVC, and AV1, MCBE achieves impressive results, reducing cumulative encoding energy by 56.45%, storage energy usage by 94.99%, and transmission energy usage by 77.61% (considering a JND of six VMAF points). These energy reductions are in comparison to a baseline bitrate ladder encoding based on current industry practice.