

Video Coding Advancements in HTTP Adaptive Streaming

IEEE ICME 2025, June 30, 2025

Hadi Amirpour Christian Timmerer

Alpen-Adria Universität Klagenfurt, Austria Christian Doppler Laboratory ATHENA

Presenter Today

Hadi Amirpour

- Focus and Research Area
 - Video Streaming
 - Video Compression
 - Quality of Experience

Asst.-Prof. at Alpen-Adria-Universität Klagenfurt Web: https://hadiamirpour.github.io/

Christian Doppler (CD) L

Amirkabir University of Technology (Tehran Polytechnic)

- Education
 - Ph.D. (Dr.-techn.) in Computer Science Universität Klagenfurt
 - M.Sc. in Electrical and Electronics Engineering K. N. Toosi University
 - B.Sc. in Biomedical Engineering Islamic Azad University
 - B.Sc. in Electrical Engineering Amirkabir University of Technology

Presenter Today

Christian Timmerer

- Focus and Research Area
 - Multimedia Systems
 - Adaptive Video Streaming (ABR)
 - Quality of Experience

- Education and Experiences

2003: MSc CS (Dipl.-Ing.) 2006: PhD CS (Dr.-techn.) 2012: Co-founded Bitmovin 2014: Habilitation (Priv.-Doz.) & Assoc. Prof. 2016: Dep. Director @ ITEC/AAU 2019: Director @ ATHENA 2022: Univ.-Prof. for Multimedia Systems 2023: Director @ ITEC/AAU

ATHENA Christian Doppler (CD) Laboratory

Bitmovin MPEG-DASH

Univ.-Prof. at Alpen-Adria-Universität Klagenfurt Director CD Lab ATHENA | Director Institute of Information Technology CIO | Head of Research and Standardization at Bitmovin

Web: http://timmerer.com/

Upon Attending This Talk, You Will Know About

- Introduction to and Background of HTTP Adaptive Streaming
- Video Coding for HTTP Adaptive Streaming
- Bitrate Ladder Construction for HTTP Adaptive Streaming
- Video Coding Enhancement for Online Video Streaming
- Fast Multi-rate Encoding for HTTP Adaptive Streaming
- Edge Computing Capabilities for Video Transcoding
- Quality of Experience Parameters in Video Coding and Streaming

Introduction to HTTP Adaptive Video Streaming

Video streaming is **dominating today's** Internet traffic

- 2024*: 68% (fixed) and 64% (mobile)
 - Video on-demand: 54% / 57% Live: 14% / 7%
 - Main applications: YouTube, Netflix (>10%),
 - Tik Tok, Amazon Prime, Disney+ (<10%)
- Video applications are in high demand, but future ones will require even more bandwidth**
- Streaming now accounts for a larger share of total TV viewing than both broadcast and cable combined.***

Top Content Categories by Downstream Volume – Fixed					Top Content Categories by Downstream Volume – Mobile			– Mobile
	Downstream Volume					Downstream Volume		
	Content Category	% DS Vol	Sub. Volume			Content Category	% DS Vol	Sub. Volume
1	On-Demand Streaming	54%	7.9 GB		1	On-Demand Streaming	57%	900 MB
2	Live Streaming	14%	2.0 GB		2	File Delivery	11%	173 MB
3	File Delivery	13%	2.0 GB		3	Live Streaming	7%	107 MB
4	Browsing	3%	441 MB		4	Game Play	5%	75 MB
5	Game Play	3%	398 MB		5	Video Call	5%	73 MB
6	Video Call	2%	300 MB		6	Browsing	2%	38 MB
7	Messaging	0.6%	81 MB		7	Messaging	2%	29 MB
8	Voice Call	0.5%	74 MB		8	Voice Call	1%	19 MB
9	Machine to Machine	0.01%	2 MB		9	Machine to Machine	0.00%	68 KB
10	AR/VR	0.00%	18 KB		10	AR/VR	0.00%	1 KB
11	Other	10%	1.4 GB		11	Other	10%	160 MB

Sources:

* Sandvine Global Internet Phenomena (January 2024)

** Cisco Annual Internet Report (2018–2023) White Paper (March 2020)

*** Nielsen's The Gauge[™] (May 2025)

Evolution of Video

THE PAST:

Invention of camera, still image photography, color reproduction, film, moving pictures

THE PRESENT:

New delivery methods: TV, recordable media, digital compressed formats, Internet streaming, mobile.

Increasing degree of realism: immersive video, 3D (holography, stereoscopic rendering, etc.)

THE FUTURE:

Recording & reproduction systems making rendered video undistinguishable from reality.

Era of Streaming

Yuriy Reznik, Christian Timmerer, 20 Years of Streaming in 20 Minutes, Mile-High Video 2020, https://athena.itec.aau.at/2020/11/20-years-of-streaming-in-20-minutes/

Early Streaming Systems

UNIVERSITÄT

• 1993: Multicast Backbone (MBONE)

- Virtual multicast network connecting several universities & ISPs
- RTP-based video conferencing tool (vic) is used to stream videos
- 1994 Rolling Stones concert first major event streamed online

• 1995: RealAudio, 1997: RealVideo

- First commercially successful mass-scale streaming system
- Proprietary protocols, codecs: PNA, RealAudio, RealVideo
- Worked over UDP, TCP, and HTTP ("cloaking" mode)
- First major broadcast: 1995 Seattle Mariners vs New York Yankees

• 1996: VDOnet, Vivo, NetShow, VXtreme, ...

- Many vendors have competed in streaming space initially
- Vivo & Xing have been acquired by Real, VXtreme by Microsoft
- By 1998, 3 main vendors remained: Real, Microsoft , and Apple

• 1998: RealSystem G2

• First Adaptive BitRate (ABR) streaming system

Yuriy Reznik, Christian Timmerer, 20 Years of Streaming in 20 Minutes, Mile-High Video 2020, https://athena.itec.aau.at/2020/11/20-years-of-streaming-in-20-minutes/

"The nice thing about standards is that you have so many to choose from."

Andrew S. Tanenbaum, Computer Networks

Source: http://xkcd.com/927/

Early Streaming Standards

- 1996: Real Time Streaming Protocol (RTSP) et al.
- 2000: ISMA Internet Streaming Media Alliance
- 2006: 3GPP PSS Packet Switched Streaming / MSS Multimedia Streaming Service Client Buffer

10

2005+: Video Delivery over HTTP/TCP

Progressive Download

Bing Wang, Jim Kurose, Prashant Shenoy, and Don Towsley. 2004. **Multimedia streaming via TCP: an analytic performance study**. ACM International Conference on Multimedia (MM'04). DOI:https://doi.org/10.1145/1027527.1027735

Streaming is Cooler, more Viewer Friendly

- Playback starts when there are just few seconds of data
- Download rate will match the encoding bitrate and downloading pauses if the player pauses → less waste

Christian Timmerer and Hermann Hellwagner. 2020. **HTTP Adaptive Streaming – Where Is It Heading?**. In Brazilian Symposium on Multimedia and the Web (WebMedia '20), November 30-December 4, 2020, São Luís, Brazil. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3428658.3434574 Christian Timmerer, Hadi Amirpour, Farzad Tashtarian, Samira Afzal, Amr Rizk, Michael Zink, and Hermann Hellwagner. 2025. **HTTP Adaptive Streaming: A Review on Current Advances and Future Challenges**. ACM Trans. Multimedia Comput. Commun. Appl. Just Accepted (May 2025). https://doi.org/10.1145/3736306

Bitrate Adaptation Schemes

A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer and R. Zimmermann, "**A Survey on Bitrate Adaptation Schemes for Streaming Media Over HTTP,**" in IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 562-585, Firstquarter 2019. doi: 10.1109/COMST.2018.2862938

MPEG-DASH Data Model

MPEG-DASH Status (11/2024)

Common Media Application Format (CMAF)

Media delivery has three main components:

- Media format
- Manifest
- Delivery

CMAF defines the media format only (fragments, headers, segments, chunks, tracks)

CMAF uses ISOBMFF and common encryption (CENC)

- CENC means the media fragments can be decrypted/decoded using different DRMs
- CMAF does not mandate CTR or CBC mode

Any delivery method may be used for delivering CMAF content: HTTP, RTP multicast/unicast, LTE broadcast

CMAF is a prerequisite for low latency HAS (i.e., DASH-LL, LL-HLS)

Abdelhak Bentaleb, Christian Timmerer, Ali C. Begen, and Roger Zimmermann. 2020. **Performance Analysis of ACTE: A Bandwidth Prediction Method for Low-latency Chunked Streaming**. ACM Trans. Multimedia Comput. Commun. Appl. 16, 2s, Article 69 (July 2020), 24 pages. DOI:https://doi.org/10.1145/3387921

Encoder

Encryption Packaging

Source

Low Latency Video Streaming

- Media Contribution
- Media Ingest
- Media Distribution

19

Communications Surveys & Tutorials, doi: 10.1109/COMST.2025.3555514.

CMCD and CMSD in Video Streaming

What is CMCD? – Common Media Client Data

- Client → Server reporting during HTTP adaptive streaming
- Sends playback metrics (buffer level, bitrate, throughput) with HTTP requests
- Used for delivery optimization, CDN prefetching, and QoE analytics
- Standard: CTA-5004

Why do they matter?

- Enable more efficient streaming over HTTP/TCP
- Support QoE improvements without intrusive client instrumentation
- Facilitate data-driven delivery optimization in modern video services

What is CMSD? – Common Media Server Data

- Server → Client signaling during HTTP adaptive streaming
- Provides server state (cache status, load) in HTTP responses
- Enables informed ABR (adaptive bitrate) decisions by clients
- Standard: CTA-5006

Tashtarian, Farzad, et al. "ALPHAS: Adaptive Bitrate Ladder Optimization for Multi-Live Video Streaming." *IEEE International Conference on Computer Communications*, 2025.

Media over QUIC

- Evolution of HTTP/1.1 \rightarrow HTTP/2 (based on SPDY) \rightarrow HTTP/3 (QUIC)
- Media over QUIC (MOQ)
 - Media over QUIC Transport [draft-ietf-moq-transport-12]
 - Low Overhead Media Container [draft-ietf-moq-loc-00]
 - WARP Streaming Format [draft-ietf-moq-warp-00]
- Initial results & testbeds available: <u>https://moqtail.dev/</u>

Zafer Gurel, Tugce Erkilic Civelek, Deniz Ugur, Yigit K. Erinc, and Ali C. Begen. 2024. **Media-over-QUIC Transport vs. Low-Latency DASH: a Deathmatch Testbed**. In Proceedings of the 15th ACM Multimedia Systems Conference (MMSys '24). Association for Computing Machinery, New York, NY, USA, 448–452. https://doi.org/10.1145/3625468.3652191

PLAYER

PLAYER

PLAYER

Video Coding for HTTP Adaptive Streaming (HAS)

Video Coding for HTTP Adaptive Streaming (HAS)

Video Codec Timeline

Video Coding Building Blocks

Video Coding Building Blocks

Predict

Removes redundancy by predicting the current block from

Image: selection of the selection of the

(a) itself (intra) or

(b) previous/future frames (inter)

Only the difference ("residual") is coded.

Video Coding Building Blocks

Intra coding

Predict

Removes redundancy by predicting the current block from

- (a) itself (**intra**) or
- (b) previous/future frames (inter)

Only the difference ("residual") is coded.

Predict

Removes redundancy by predicting the current block from

- (a) itself (**intra**) or
- (b) previous/future frames (inter)

Only the difference ("residual") is coded.

Inter coding

Intraframe Compression Every frame is encoded Individually

Interframe Compression Only the differences between frames are encoded for each group of frames

45 38

31 30

40 60

82 97

DCT DCT coefficient data Original pixel data 114 108 100 99 109 129 152 166 700 200 0 109 102 95 94 104 124 146 161 -150 0 0 93 85 84 94 114 137 151 110 99 0 0 80 72 71 82 102 124 138 86 0 0 0 0 0 73 66 58 57 68 88 110 125 0 0 60 53 46 45 55 75 97 112 0 0 43 50 36 35 45 65 88 102 0 0

0

0

Video Coding Building Blocks

_____ Pao

Transform

Packs residual energy into a few coefficients so most can later be quantized to zero.

P4(39) P3(24) A(15) P2(13) P1(11) B(7) C(6) D(6) E(5) Symbol Count Code Subtotal (# of bits) ----------------------15 0 15 А В 7 100 21 С 6 101 18 D 6 110 18 Е 5 111 15 TOTAL (# of bits): 87 List: A(15),B(7),C(6),D(6),E(5)

Video Coding Building Blocks

Entropy Encode

Turns runs of quantized coefficients, motion data, headers, etc. into a compact bitstream.

reconstructed

=

predicted

residual

45

Video Codec Timeline

Video Codec Block Partitioning

Video Codec Block Partitioning (AVC)

Mode	Partition Types
Inter	16×16, 16×8, 8×16, 8×8, 8×4, 4×8, 4×4
Intra	16×16 (Intra_16x16), 4×4 (Intra_4x4), 8×8 (Intra_8x8 in high profile)
Transform	4×4 (default), 8×8 (high profile)

Video Codec Block Partitioning (HEVC)

Video Codec Block Partitioning (VVC)

Video Codec Block Partitioning (VVC)

Video Codec Evaluation

Video Codec Evaluation (compression efficiency)

Video Codec Evaluation (Implementation)

LIST OF VIDEO CODECS FOR VARIOUS VIDEO CODING STANDARDS: "E" DENOTES ENCODERS ONLY, "D" DENOTES DECODERS ONLY, AND "ED" INDICATES THAT BOTH ENCODER AND DECODER ARE AVAILABLE.

Codec	Software Implementation	Hardware Implementation		
H.264	x264 [e], Nero Digital [ed] MainConcept [ed], OpenH264 [ed]	Intel Quick Sync [ed], AMD Video Coding Engine (VCE) [e] AMD Video Core Next (VCN) [ed], Nvidia NVENC [e], Nvidia NVDEC [d], Nvidia PureVideo [d]		
H.265	x265 [e], OpenHEVC [ed], Turing [ed], Aurora5 [ed]	Intel Quick Sync Video [ed], ARM (Media Foundation) [ed] AMD Video Core Next (VCN) [ed], Nvidia NVENC [e], Nvidia NVDEC [d]		
VP9	libvpx [ed], SVT-VP9 [e], ffvp9 [d], and Eve [e]	Intel Quick Sync Video [ed], AMD Video Coding Next (VCE) [d], Nvidia NVENC (e), Nvidia NVDEC (d)		
AV1	Libaom [ed], rav1e [e], SVT-AV1 [ed] dav1d [d], Cisco AV1 [ed], libgav1 [d]	Intel Quick Sync Video AMD Video Core Next (VCN) [ed], Nvidia NVENC (e), Nvidia NVDEC (d)		
VVC	VVenC [e], VVdeC [d], uvg266 [e], openVVC [d]	-		

Video Codec Evaluation (Compatibility)

Video Codec Evaluation (Compatibility)

- Keeps VVC syntax, swaps tools small CNNs for in-loop filtering, intra prediction, motion refinement, RDO decisions
- Image: Ima
- ② Complexity bump, but ASIC-friendly ≤ 64 kB weights per model; extra NN accelerator block plus existing video core

Next-generation Video Coding Standard In-Loop Filter

UNIVERSITÄT

(b) Network structure for chroma components.

- **Pure learned codec** transformer/CNN auto-encoder replaces the entire hybrid pipeline; only a thin bit-stream wrapper remains
- **IN -40–60 % BD-rate vs. VVC** on HD/4K test sets (best lab numbers, 2025)
- Solution All silicon real-time today only on datacentre GPUs or flagship NPUs; both encoder and decoder are GPU-class workloads
- Training-data now part of conformance models, checkpoints and dataset IDs must be signalled in the spec
- Standardisation JVET "EE-1" test model v10; first full neural CfE expected late-2025; commercial deployment realistically ≥ 2028

Figure 2: Top: The HiNeRV architecture. Bottom left: The HiNeRV block. HiNeRV block take feature maps X_{n-1} and patch index (i, j, t) as input, upsample the feature maps, enhances it with the hierarchical encoding, then computes the transformed maps X_n . Bottom right: The local grid. In HiNeRV, the hierarchical encoding is computed by performing interpolation from the local grid, where the modulo of the coordinates is being used.

Table 2: Video representation results with the UVG dataset [38] (for S/M/L scales). Results are in PSNR. FPS is the encoding/decoding rate.

Model	Size	MACs	FPS	Beauty	Bosph.	Honey.	Jockey	Ready.	Shake.	Yacht.	Avg.
NeRV	3.31M	227G	32.4 /90.0	32.83	32.20	38.15	30.30	23.62	33.24	26.43	30.97
E-NeRV	3.29M	230G	20.7/75.9	33.13	33.38	38.87	30.61	24.53	34.26	26.87	31.75
PS-NeRV	3.24M	538G	14.7/42.6	32.94	32.32	38.39	30.38	23.61	33.26	26.33	31.13
HNeRV	3.26M	175G	24.6/ 93.4	33.56	35.03	39.28	31.58	25.45	34.89	28.98	32.68
FFNeRV	3.40M	228G	19.0/49.3	33.57	35.03	38.95	31.57	25.92	34.41	28.99	32.63
HiNeRV	3.19M	181G	10.1/35.5	34.08	38.68	39.71	36.10	31.53	35.85	30.95	35.27
NeRV	6.53M	228G	32.0/90.1	33.67	34.83	39.00	33.34	26.03	34.39	28.23	32.78
E-NeRV	6.54M	245G	20.5/74.6	33.97	35.83	39.75	33.56	26.94	35.57	28.79	33.49
PS-NeRV	6.57M	564G	14.6/42.0	33.77	34.84	39.02	33.34	26.09	35.01	28.43	32.93
HNeRV	6.40M	349G	20.1/68.5	33.99	36.45	39.56	33.56	27.38	35.93	30.48	33.91
FFNeRV	6.44M	229G	18.9/49.3	33.98	36.63	39.58	33.58	27.39	35.91	30.51	33.94
HiNeRV	6.49M	368G	8.4/29.1	34.33	40.37	39.81	37.93	34.54	37.04	32.94	36.71
NeRV	13.01M	230G	31.7/89.8	34.15	36.96	39.55	35.80	28.68	35.90	30.39	34.49
E-NeRV	13.02M	285G	21.0/68.1	34.25	37.61	39.74	35.45	29.17	36.97	30.76	34.85
PS-NeRV	13.07M	608G	14.1/41.4	34.50	37.28	39.58	35.34	28.56	36.51	30.28	34.61
HNeRV	12.87M	701G	15.6/52.7	34.30	37.96	39.73	35.47	29.67	37.16	32.31	35.23
FFNeRV	12.66M	232G	18.4/49.3	34.28	38.48	39.74	36.72	30.75	37.08	32.36	35.63
HiNeRV	12.82M	718G	5.5/19.9	34.66	41.83	39.95	39.01	37.32	38.19	35.20	38.02

<u>Figure 2</u>: Top: The HiNeRV architecture. Bottom left: The HiNeRV block. HiNeRV block take feature maps X_{n-1} and patch index (i, j, t) as input, upsample the feature maps, enhances it with the hierarchical encoding, then computes the transformed maps X_n . Bottom right: The local grid. In HiNeRV, the hierarchical encoding is computed by performing interpolation from the local grid, where the modulo of the coordinates is being used.

Fig. 2: The proposed Neural representations for Scalable Video Coding (NSVC) framework.

Fig. 5: Visual comparison of among cropped reconstructed frames from SVC, SHVC, and NSVC (Ours).

Figure 2. Paradigm shift. To enhance efficiency, we eliminate explicit motion-related modules and adopt implicit temporal modeling. We also propose learning latent representations at a single low resolution, replacing the traditional progressive downsampling approach. Additionally, DCVC-RT supports integerization for cross-device consistency and incorporates a module-bank-based rate-control mechanism.

Figure 1: Overview of CMC-Bench. We demonstrate the superiority of Cross Modality Compression over traditional codecs, and subjective and objective evaluations of compression results on Consistency and Perception. This benchmark can motivate it to become the future codec paradigm.

Text: The I2T model converts images to text and is directly restored by the T2I model. Due to its reliance on the text modality only, this approach achieves a CR of 10,000, ideal for ELB situations.

Pixel: Each 64×64 blocks from ground truth are merged and quantized into one pixel. Beyond the *Text* mode, these pixels initialize the T2I process. The pixel representation is relatively compact, offering a CR of around 5,000, suitable for less rigorous ELB but higher demands on consistency.

Image: Traditional codecs are employed to compress the image, which serves as input for the T2I model for enhancement. Unlike the previous two, it omits the time-consuming I2T process by leaving the text input of the T2I model empty. This approach can achieve a CR of 1,000, suitable for ULB bandwidth but with high real-time requirements.

Full: Extending the *Image* mode, the T2I is guided by text content, encompassing the full pipeline of I2T, traditional codec, and T2I. It also has a CR of approximately 1,000, suitable for the most demanding performance scenarios.

Figure 3: Illustration of 4 working modes of CMC. *Text* mode roughly reconstructs the semantic information, *Pixel* mode slightly improves low-level consistency, *Image* mode provides a similar structure towards ground truth but a different character, and *Full* mode has the best performance.

Video Coding for HAS

What is a bitrate ladder?

*	

Vancouver 2010				
	Encoding Bitrate	Resolution		
Rep. #1	3.45 Mbps	1280 x 720		
Rep. #2	1.95 Mbps	848 x 480		
Rep. #3	1.25 Mbps	640 x 360		
Rep. #4	900 Kbps	512 x 288		
Rep. #5	600 Kbps	400 x 224		
Rep. #6	400 Kbps	312 x 176		

	Sochi 2014			
	Encoding Bitrate	Resolution		
Rep. #1	3.45 Mbps	1280 x 720		
Rep. #2	2.2 Mbps	960 x 540		
Rep. #3	1.4 Mbps	960 x 540		
Rep. #4	900 Kbps	512 x 288		
Rep. #5	600 Kbps	512 x 288		
Rep. #6	400 Kbps	340 x 192		
Rep. #7	200 Kbps	340 x 192		

ryeongenang 2010					
	Encoding Bitrate	Resolution			
Rep. #1	18 Mbps	4K (6op)			
Rep. #2	12.2 Mbps	2560x1440 (60p)			
Rep. #3	4.7 Mbps	2K (60p)			
Rep. #4	3.5 Mbps	1280x720 (60p)			
Rep. #5	2 Mbps	1280 x 720			
Rep. #6	1.2 Mbps	768 x 432			
Rep. #7	750 Kbps	640 x 360			
Rep. #8	500 Kbps	512 x 288			
Rep. #9	300 Kbps	320 x 180			
Rep. #10	200 Kbps	320 x 180			

Pupping Chang 2018

Source: Vertigo MIX10, Alex Zambelli's Streaming Media Blog, Akamai, Comcast

Bitrate Ladder Construction

Fixed set of bitrates

PyeongChang 2018

	Encoding Bitrate	Resolution
Rep. #1	18 Mbps	4K (6op)
Rep. #2	12.2 Mbps	2560x1440 (60p)
Rep. #3	4.7 Mbps	2K (60p)
Rep. #4	3.5 Mbps	1280x720 (60p)
Rep. #5	2 Mbps	1280 x 720
Rep. #6	1.2 Mbps	768 x 432
Rep. #7	750 Kbps	640 x 360
Rep. #8	500 Kbps	512 x 288
Rep. #9	300 Kbps	320 x 180
Rep. #10	200 Kbps	320 x 180

Fixed set of bitrates

	~
l	

Sub-optimal

Content-dependency

	•	
	ン	
-		

ATHENA Christian Doppler (CD) Laboratory

	Encoding Bitrate	Resolution
Rep. #1	18 Mbps	4K (60p)
Rep. #2	12.2 Mbps	2560x1440 (60p)
Rep. #3	4.7 Mbps	2K (60p)
Rep. #4	3.5 Mbps	1280x720 (60p)
Rep. #5	2 Mbps	1280 x 720
Rep. #6	1.2 Mbps	768 x 432
Rep. #7	750 Kbps	640 x 360
Rep. #8	500 Kbps	512 x 288
Rep. #9	300 Kbps	320 x 180
Rep. #10	200 Kbps	320 x 180

Network-aware bitrate ladder construction

Network-aware bitrate ladder construction

2019,

Network-aware bitrate ladder construction

2019,

Network-aware bitrate ladder construction

Network-aware bitrate ladder construction (LALISA)

Network-aware bitrate ladder construction (LALISA)

- Clients send their **desired bitrate** at each instance using **CMCD** The server selects bitrates to construct the bitrate ladder based on the probability of desired bitrates
- This approach requires modification in the player

Network-aware bitrate ladder construction (ARTEMIS)

Network-aware bitrate ladder construction (ARTEMIS)

- The concept of Mega Manifest is introduced
- The clients select their desired bitrate from the Mega Manifest
- Based on probability of the requested bitrate, the optimized ladder is constructed

Quality-aware bitrate ladder construction

	Encoding Bitrate	Resolution
Rep. #1	18 Mbps	4K (60p)
Rep. #2	12.2 Mbps	2560x1440 (60p)
Rep. #3	4.7 Mbps	2K (60p)
Rep. #4	3.5 Mbps	1280x720 (60p)
Rep. #5	2 Mbps	1280 x 720
Rep. #6	1.2 Mbps	768 x 432
Rep. #7	750 Kbps	640 x 360
Rep. #8	500 Kbps	512 x 288
Rep. #9	300 Kbps	320 x 180
Rep. #10	200 Kbps	320 x 180

Quality-aware bitrate ladder construction

ATHENA Christian Doppler (CD) Laboratory

	Encoding Bitrate	Resolution
Rep. #1	18 Mbps	4K (60p)
Rep. # 2	12.2 Mbps	2560x1440 (60p)
Rep. #3	4.7 Mbps	2K (60p)
Rep. #4	3.5 Mbps	1280x720 (60p)
Rep. #5	2 Mbps	1280 x 720
Rep. #6	1.2 Mbps	768 x 432
Rep. #7	750 Kbps	640 x 360
Rep. #8	500 Kbps	512 x 288
Rep. #9	300 Kbps	320 x 180
Rep. #10	200 Kbps	320 x 180

Quality-aware bitrate ladder construction

	Encoding Bitrate	Resolution
Rep. #1	18 Mbps	4K (60p)
Rep. # 2	12.2 Mbps	2560x1440 (60p)
Rep. #3	4.7 Mbps	2K (60p)
Rep. #4	3.5 Mbps	1280x720 (60p)
Rep. #5	2 Mbps	1280 x 720
Rep. #6	1.2 Mbps	768 x 432
Rep. #7	750 Kbps	640 x 360
Rep. #8	500 Kbps	512 x 288
Rep. #9	300 Kbps	320 x 180
Rep. #10	200 Kbps	320 x 180

Original Video

18Mpbs

100% of people perceive them as similar

Original Video

12Mpbs

98% of people perceive them as similar

Quality-aware bitrate ladder construction

	Encoding Bitrate	Resolution
Rep. #1	18 Mbps	4K (6op)
Rep. #2	12.2 Mbps	2560x1440 (60p)
Rep. #3	4.7 Mbps	2K (60p)
Rep. #4	3.5 Mbps	1280x720 (60p)
Rep. #5	2 Mbps	1280 x 720
Rep. #6	1.2 Mbps	768 x 432
Rep. #7	750 Kbps	640 x 360
Rep. #8	500 Kbps	512 x 288
Rep. #9	300 Kbps	320 x 180
Rep. #10	200 Kbps	320 x 180

Quality-aware bitrate ladder construction

The minimum visual difference that can be perceived by HVS, ` *i.e.*, the difference between two adjacent perceptual distortion levels, refers as to one **Just Noticeable Difference** (JND)

ATHENA Christian Doppler (CD) Laboratory

	Encoding Bitrate	Resolution
Rep. #1	18 Mbps	4K (60p)
Rep. #2	12.2 Mbps	2560x1440 (60p)
Rep. #3	4.7 Mbps	2K (60p)
Rep. #4	3.5 Mbps	1280x720 (60p)
Rep. #5	2 Mbps	1280 x 720
Rep. #6	1.2 Mbps	768 x 432
Rep. #7	750 Kbps	640 x 360
Rep. #8	500 Kbps	512 x 288
Rep. #9	300 Kbps	320 x 180
Rep. #10	200 Kbps	320 x 180

PyeongChang 2018

Bitrate Ladder Construction

Quality-aware bitrate ladder construction

The minimum visual difference that can be perceived by HVS, ' *i.e.*, the difference between two adjacent perceptual distortion levels, refers as to one **Just Noticeable Difference** (JND)

PyeongChang 2018

Bitrate Ladder Construction

Quality-aware bitrate ladder construction

The minimum visual difference that can be perceived by HVS, ' *i.e.*, the difference between two adjacent perceptual distortion levels, refers as to one **Just Noticeable Difference** (JND)

30% Bitrate Saving

[Menon, Amirpour, et al,	2022,	IEEE ICME]
[Menon, Amirpour , et al,	2022,	IEEE ICME]

SRC

SRC

SRC

For video content *m*, VW-JND annotations for *N* reliable subjects :

$$J^m = \left[j_1^m, j_2^m, ..., j_N^m \right]$$

Probability Mass Function (PMF) of J^m : $p^m(x) = P(VW-JND = x) = \frac{1}{N} \sum_{i=1}^N l(j_i^m = x)$

96

Just Noticeable Difference (JND)

m

SRC

2

1

...

N

3

Cumulative Distribution Function (CDF) can be calculated from the PMF:

$$\text{CDF}_{\text{emp}}^{\text{m}}(x) = P(\text{VW-JND} \le x) = \sum_{\omega \le x} p^{m}(\omega)$$

SRC

$$SUR_{emp}^{m}(x) = 1 - CDF_{emp}^{m}(x)$$

SRC

- Satisfied: didn't perceive difference
 - Not satisfied: perceived a difference

Content

...

Subjects

Content

UNIVERSITÄT

Just Noticeable Difference (JND)

UNIVERSITÄT KLAGENFURT

Uncertainty

QP =30

Bitrate as a function of SUR

(b)

(a)

Quality-aware bitrate ladder construction

/MAF RheinMain Univ: 2

[Amirpour, et al,

2022,

Quality-aware bitrate ladder construction

2022,

[Amirpour, et al,

[Zhu, Amirpour, et al,

Bitrate Ladder Construction

Quality-aware bitrate ladder construction

108

Bitrate Ladder Construction

Quality-aware bitrate ladder construction

	Encoding Bitrate
Rep. #01	145 kbps
Rep. #02	300 kbps
Rep. #03	600 kbps
Rep. #04	900 kbps
Rep. #05	1600 kbps
Rep. #06	2400 kbps
Rep. #07	3400 kbps
Rep. #08	4500 kbps
Rep. #09	5800 kbps
Rep. #10	8100 kbps
Rep. #11	11600 kbps
Rep. #12	16800 kbps

Quality-aware

Bitrates

Network-aware

_

_

	7
-	

	Encoding Bitrate	Resolution
Rep. #01	145 kbps	640x360
Rep. #02	300 kbps	768x432
Rep. #03	600 kbps	960x540
Rep. #04	900 kbps	960x540
Rep. #05	1600 kbps	960x540
Rep. #06	2400 kbps	1280x720
Rep. #07	3400 kbps	2180x720
Rep. #08	4500 kbps	1920x1080
Rep. #09	5800 kbps	1920x1080
Rep. #10	8100 kbps	2560x1440
Rep. #11	11600 kbps	3840x2160
Rep. #12	16800 kbps	3840x2160

Per-title Encoding

ATHENA

Christian Doppler (CD) Laboratory

Per-title Encoding

UNIVERSITÄT KLAGENFURT

Fixed QP encode

Highest (average) quality encode, with bitrate x kbps

Lowest (average) bitrate encode, with quality y

_

_

	7
-	

	Encoding Bitrate	Resolution
Rep. #01	145 kbps	640x360
Rep. #02	300 kbps	768x432
Rep. #03	600 kbps	960x540
Rep. #04	900 kbps	960x540
Rep. #05	1600 kbps	960x540
Rep. #06	2400 kbps	1280x720
Rep. #07	3400 kbps	2180x720
Rep. #08	4500 kbps	1920x1080
Rep. #09	5800 kbps	1920x1080
Rep. #10	8100 kbps	2560x1440
Rep. #11	11600 kbps	3840x2160
Rep. #12	16800 kbps	3840x2160

*	

	Encoding Bitrate	Resolution	FR
Rep. #01	145 kbps	640x360	60
Rep. #02	300 kbps	768x432	60
Rep. #03	600 kbps	960x540	60
Rep. #04	900 kbps	960x540	60
Rep. #05	1600 kbps	960x540	60
Rep. #06	2400 kbps	1280x720	60
Rep. #07	3400 kbps	2180x720	60
Rep. #08	4500 kbps	1920x1080	60
Rep. #09	5800 kbps	1920x1080	60
Rep. #10	8100 kbps	2560x1440	60
Rep. #11	11600 kbps	3840x2160	60
Rep. #12	16800 kbps	3840x2160	60

Per-title Encoding using Spatio-Temporal Resolutions (PSTR)

Table 1: Bitrate saving (BD-rate (%)) against encoding with 1080p, 120fps.

Bitrate Savings: Resolution: 16% Resolution+Framerate: 33%

	Video characteristics			BD-Rate (PS	BD-Rate (PSNR)		/IAF)	
	Source	SI	TI	framerate	state-of-the-art	PSTR	state-of-the-art	PSTR
Beauty	UVG	16.89	7.21	120	-26.38	-28.15	-32.05	-48.06
Bosphorus	UVG	29.76	4.70	120	-13.72	-17.06	-15.00	-29.41
Flowers	BVI-HFR	56.01	3.11	120	-11.85	-37.54	-9.72	-24.16
Golf	BVI-HFR	51.25	3.08	120	-17.01	-42.17	-8.92	-33.11
HoneyBee	UVG	25.04	2.38	120	-3.09	-15.38	-9.31	-29.28
Jockey	UVG	25.71	20.95	120	-34.36	-34.71	-37.74	-37.74
Pond	BVI-HFR	70.03	1.65	120	-12.60	-45.90	-6.34	-38.80
Typing	BVI-HFR	29.28	3.75	120	-19.87	-35.35	-17.16	-22.25
YachtRide	UVG	47.83	12.02	120	-11.25	-11.74	-14.56	-35.84
average					-16.68	-29.82	-16.75	-33.18

[Amirpour, et al,

* 11	7
-	

	Encoding Bitrate	Resolution	FR
Rep. #01	145 kbps	640x360	60
Rep. #02	300 kbps	768x432	60
Rep. #03	600 kbps	960x540	60
Rep. #04	900 kbps	960x540	50
Rep. #05	1600 kbps	960x540	50
Rep. #06	2400 kbps	1280x720	50
Rep. #07	3400 kbps	2180x720	30
Rep. #08	4500 kbps	1920x1080	30
Rep. #09	5800 kbps	1920x1080	30
Rep. #10	8100 kbps	2560x1440	30
Rep. #11	11600 kbps	3840x2160	24
Rep. #12	16800 kbps	3840x2160	24

× 1	→ _
	→ С

	Encoding Bitrate	Resolution	FR	Preset
Rep. #01	145 kbps	640x360	60	veryslow
Rep. #02	300 kbps	768x432	60	veryslow
Rep. #03	600 kbps	960x540	60	veryslow
Rep. #04	900 kbps	960x540	50	veryslow
Rep. #05	1600 kbps	960x540	50	veryslow
Rep. #06	2400 kbps	1280x720	50	veryslow
Rep. #07	3400 kbps	2180x720	30	veryslow
Rep. #08	4500 kbps	1920x1080	30	veryslow
Rep. #09	5800 kbps	1920x1080	30	veryslow
Rep. #10	8100 kbps	2560x1440	30	veryslow
Rep. #11	11600 kbps	3840x2160	24	veryslow
Rep. #12	16800 kbps	3840x2160	24	veryslow

Energy Consumption

preset	name	ctu	min-cu-size	bframes	ref	me	merange	rc-lookahead
0	ultrafast	32	16	3	1	dia	57	5
1	superfast	32	8	3	1	hex	57	10
2	veryfast	64	8	4	2	hex	57	15
3	faster	64	8	4	2	hex	57	15
4	fast	64	8	4	3	hex	57	15
5	medium	64	8	4	3	hex	57	20
6	slow	64	8	4	4	star	57	25
7	slower	64	8	8	5	star	57	40
8	veryslow	64	8	8	5	star	57	40
9	placebo	64	8	8	5	star	92	60

Energy Consumption

Preset Selection: Energy Saving: 70% Quality drop: 0.2 VMAF

Model	X	0.5	1	2	6
	BD-VMAF	-0.22	-0.51	-1.53	-2.91
avg	$E_{saving}(\%)$	68.33	83.49	90.94	97.75
DE	BD-VMAF	-0.15	-0.39	-0.86	-1.92
KF	$E_{saving}(\%)$	71.08	82.35	90.86	97.20

[Amirpour, et al,

Energy Consumption

(c) relative decoding energy consumption for video #58.

(d) relative decoding energy consumption for video #52.

Energy Consumption

(c) relative decoding energy consumption for video #38.

(d) relative decoding energy consumption for video #65.

Energy Consumption

UNIVERSITÄT KLAGENFURT

Energy Consumption

Energy Consumption

*	

			BDDE %						
au	BD-Rate %	BD-VMAF	Device 1 (Apple Mac)		Device 2 (Lenovo Linux)			Device 3 (Lenovo Windows)	
			FFmpeg	HM	FFplay	FFmpeg	HM	FFplay	VLC (Hardware Accelerated)
0.50	-2.44	0.27	-21.37	-22.50	-19.58	-20.54	-21.56	-18.03	-22.35
0.75	-2.12	0.21	-24.94	-26.80	-23.79	-23.30	-25.76	-21.21	-27.14
1.00	-1.54	0.13	-27.69	-30.10	-27.04	-25.26	-29.01	-23.40	-31.93
1.25	-0.73	0.00	-31.18	-34.54	-31.15	-28.11	-33.27	-26.60	-36.75
1.50	0.09	-0.15	-33.84	-37.55	-34.25	-30.07	-36.20	-28.80	-40.00
1.75	1.09	-0.30	-36.44	-40.31	-37.15	-31.93	-38.90	-30.72	-43.35
2.00	2.52	-0.49	-39.20	-43.25	-40.22	-33.96	-41.86	-32.87	-46.37

TABLE 4. The performance of ESTR compared to the basic per-title encoding across various codecs.

	AVC (FFmpeg libx264)		HEVC (FFmpeg libx265)			VVC (VVdeC)			
,	BD-Rate %	BD-VMAF	BDDE %	BD-Rate %	BD-VMAF	BDDE %	BD-Rate %	BD-VMAF	BDDE %
0.50	-5.01	0.83	-14.46	-2.44	0.27	-21.37	-0.70	0.08	-17.24
0.75	-4.83	0.79	-15.29	-2.12	0.21	-24.94	-0.01	0.00	-20.97
1.00	-4.46	0.74	-15.73	-1.54	0.13	-27.69	0.93	-0.11	-24.40
1.25	-4.17	0.64	-16.23	-0.73	0.00	-31.18	1.86	-0.23	-26.89
1.50	-4.02	0.57	-16.52	0.09	-0.15	-33.84	3.48	-0.39	-29.53
1.75	-3.65	0.47	-17.08	1.09	-0.30	-36.44	5.36	-0.56	-31.69
2.00	-2.99	0.37	-17.47	2.52	-0.49	-39.20	7.02	-0.73	-33.59

|--|

	Encoding Bitrate	Resolution	FR	Preset	Bit depth
Rep. #01	145 kbps	640x360	60	veryslow	10
Rep. #02	300 kbps	768x432	60	veryslow	10
Rep. #03	600 kbps	960x540	60	slower	10
Rep. #04	900 kbps	960x540	60	slow	10
Rep. #05	1600 kbps	960x540	60	medium	10
Rep.#06	2400 kbps	1280x720	60	medium	10
Rep. #07	3400 kbps	2180x720	60	fast	10
Rep. #08	4500 kbps	1920x1080	60	faster	10
Rep. #09	5800 kbps	1920x1080	60	veryfast	10
Rep. #10	8100 kbps	2560x1440	60	veryfast	10
Rep. #11	11600 kbps	3840x2160	60	superfast	10
Rep. #12	16800 kbps	3840x2160	60	ultrafast	10

Energy Consumption

Factor	8-bit	10-bit
File size	Smaller	Slightly larger (5–20%)
Banding risk	High	Low
Color fidelity	Limited	Much better
Compatibility	Higher	Needs modern devices/codecs
Processing load	Lower	Slightly higher

Energy Consumption

UNIVERSITÄT KLAGENFURT

Energy Consumption

UNIVERSITÄT

Fig. 4: BDR (%) for convex hull compared to YUV444p10le.

Fig. 6: (left) BDEE and (right) BDDE heatmaps.

×	

	Encoding Bitrate	Resolution	FR	Preset	Bit depth
Rep. #01	145 kbps	640x360	60	veryslow	8
Rep. #02	300 kbps	768x432	60	veryslow	8
Rep. #03	600 kbps	960x540	60	slower	9
Rep. #04	900 kbps	960x540	60	slow	9
Rep. #05	1600 kbps	960x540	60	medium	9
Rep. #06	2400 kbps	1280x720	60	medium	10
Rep. #07	3400 kbps	2180x720	60	fast	10
Rep. #08	4500 kbps	1920x1080	60	faster	10
Rep. #09	5800 kbps	1920x1080	60	veryfast	10
Rep. #10	8100 kbps	2560x1440	60	veryfast	10
Rep. #11	11600 kbps	3840x2160	60	superfast	10
Rep. #12	16800 kbps	3840x2160	60	ultrafast	10

CPU

CPU

Bitrate Ladder Construction

CPU vs GPU devices

Encoding Resolution Encoding Resolution
Rep.#01 145 kbps 640x360 Rep.#01 100 kbp s 480x270
Rep.#02 300 kb ps 76 8x432 Rep.#02 20 0 kb ps 480x270
Rep.#03 600 kbps 960 x540 Rep.#03 400 kbps 640 x360
Rep.#04 900 kbps 960 x540 Rep.#04 70 0 kbp s 640 x360
Rep.#05 1600 kb ps 960 x540 Rep.#05 1200 kb ps 76 8 x432
Rep.#06 240 0 kbps 12 80x720 Rep.#06 18 00 kbps 960 x540
Rep.#07 3400 kbps 1280x720 Rep.#07 2500 kbps 960x540
Rep.#08 4500 kbps 1920x1080 Rep.#08 3500 kbps 960x540
Rep.#09 5800 kbps 1920x1080 Rep.#09 4500 kbps 1280x720
Rep.#10 8100 kb ps 2560x1440 Rep.#10 6400 kb ps 1280x720
Rep.#11 11600 kbps 3840x2160 Rep.#11 9200 kbps 1280x720
Rep.#12 16 800 kbps 3840x2160 Rep.#12 13000 kbps 1920x1080

Г

CPU vs GPU devices

	7
--	---

	Encoding Bitrate	Resolution		Encoding Bitrate	Resolution
Rep.#01	145 kbps	640x360	Rep.#01	10 0 kbp s	480x270
Rep.#02	300 kb ps	76 8x432	Rep.#02	20 0 kbp s	480x270
Rep.#03	600 kbps	960 x540	Rep.#03	400 kbps	640x360
Rep.#04	900 kbps	960 x540	Rep.#04	70 0 kbp s	640x360
Rep.#05	16 00 kb ps	960 x540	Rep.#05	12 00 kbps	76 8x432
Rep.#06	240 0 kbp s	1280x720	Rep.#06	18 00 kb ps	960 x5 4 0
Rep.#07	3400 kb ps	1280x720	Rep.#07	2500 kbps	960 x5 4 0
Rep.#08	4500 kbps	1920x1080	Rep.#08	3500 kbps	960 x5 4 0
Rep.#09	5800 kbps	1920x1080	Rep.#09	4500 kbps	1280x720
Rep.#10	8100 kb ps	2560x1440	Rep.#10	6400 kbps	1280x720
Rep.#11	11600 kbps	3840x2160	Rep.#11	92 00 kb ps	1280x720
Rep. #12	16 800 kbps	3840x2160	Rep.#12	13000 kbps	1920x1080

Backward Compatibility

Challenges Increasing cost

DNN Reliability

2023,

	Encoding Bitrate	Resolution
Rep.#01	145 kbps	640x360
Rep.#02	300 kb ps	76 8x432
Rep.#03	600 kbps	960 x5 4 0
Rep.#04	900 kbps	960 x5 4 0
Rep.#05	16 00 kb ps	960 x540
Rep.#06	240 0 kbp s	1280x720
Rep.#07	3400 kb ps	1280x720
Rep.#08	4500 kbps	1920x1080
Rep.#09	5800 kbps	1920x1080
Rep.#10	8100 kb ps	2560x1440
Rep.#11	11600 kbps	3840x2160
Rep. #12	16 800 kbps	3840x2160

Backward Compatibility

CPU vs GPU devices (DNN training)

	Encoding Bitrate	Resolution
Rep.#01	145 kbps	640x360
Rep.#02	300 kb ps	76 8x432
Rep.#03	600 kbps	960 x540
Rep.#04	900 kbps	960 x540
Rep.#05	16 00 kb ps	960 x540
Rep.#06	240 0 kbp s	1280x720
Rep.#07	3400 kb ps	1280x720
Rep.#08	4500 kbps	1920x1080
Rep.#09	5800 kbps	1920x1080
Rep.#10	8100 kb ps	2560x1440
Rep.#11	11600 kbps	3840x2160
Rep.#12	16 800 kbps	3840x2160

	Encoding Bitrate	Resolution
Rep.#01	145 kbps	640x360
Rep.#02	300 kb ps	76 8x432
Rep.#03	600 kbps	960 x5 4 0
Rep.#04	900 kbps	960 x5 4 0
Rep.#05	16 00 kb ps	960 x5 4 0
Rep.#06	240 0 kbp s	1280x720
Rep.#07	3400 kb ps	1280x720
Rep.#08	4500 kbps	1920x1080
Rep.#09	5800 kbps	1920x1080
Rep.#10	8100 kb ps	2560x1440
Rep.#11	11600 kbps	3840x2160
Rep.#12	16 800 kbps	3840x2160

Bitrate Ladder Construction CPU vs GPU devices (DNN Compression)

	Encoding Bitrate	Resolution
Rep.#01	145 kbps	640x360
Rep.#02	300 kb ps	76 8x432
Rep.#03	600 kbps	960 x5 4 0
Rep.#04	900 kbps	960 x5 4 0
Rep.#05	16 00 kb ps	960 x5 4 0
Rep.#06	240 0 kbp s	1280x720
Rep.#07	3400 kb ps	1280x720
Rep.#08	4500 kbps	1920x1080
Rep.#09	5800 kbps	1920x1080
Rep.#10	8100 kb ps	2560x1440
Rep.#11	11600 kbps	3840x2160
Rep.#12	16 800 kbps	3840x2160

Bitrate Ladder Construction CPU vs GPU devices (DNN Compression)

× =	

				12kB
		Encoding Bitrate	Resolution	2000
	Rep.#01	145 kbps	640x360	···
	Rep.#02	300 kb ps	76 8x432	Compression
	Rep.#03	600 kbps	960 x540	≜
	Rep.#04	900 kbps	960 x540	
	Rep.#05	16 00 kb ps	960 x540	
	Rep.#06	240 0 kbp s	1280x720	
	Rep.#07	3400 kb ps	1280x720	
	Rep.#08	4500 kbps	1920x1080	
	Rep.#09	5800 kbps	1920x1080	
	Rep.#10	8100 kb ps	2560x1440	
	Rep.#11	11600 kbps	3840x2160	
	Rep.#12	16 800 kbps	3840x2160	

	Encoding Bitrate	Resolution
Rep.#01	145 kbps	640x360
Rep.#02	300 kb ps	76 8x432
Rep.#03	600 kbps	960 x540
Rep.#04	900 kbps	960 x540
Rep.#05	16 oo kb ps	960 x540
Rep.#06	240 0 kbp s	1280x720
Rep.#07	3400 kb ps	1280x720
Rep.#08	4500 kbps	1920x1080
Rep.#09	5800 kbps	1920x1080
Rep.#10	8100 kb ps	2560x1440
Rep.#11	11600 kbps	3840x2160
Rep.#12	16 800 kbps	3840x2160

	Encoding Bitrate	Resolution	
Rep.#01	145 kbps	640x360	*
Rep.#02	300 kb ps	76 8x432	%
Rep.#03	600 kbps	960 x540	-
Rep.#04	900 kbps	960 x540	%
Rep.#05	16 00 kb ps	960 x540	*
Rep.#06	240 0 kbp s	1280x720	*
Rep.#07	3400 kb ps	1280x720	-
Rep.#08	4500 kbps	1920x1080	*
Rep.#09	5800 kbps	1920x1080	-
Rep.#10	8100 kb ps	2560x1440	%
Rep.#11	11600 kbps	3840x2160	-
Rep.#12	16 800 kbps	3840x2160	

	Encoding Bitrate	Resolution	
Rep.#01	145 kbps	640x360	*
Rep.#02	300 kb ps	76 8x432	%
Rep.#03	600 kbps	960 x540	-
Rep.#04	900 kbps	960 x540	%
Rep.#05	16 00 kb ps	960 x540	*
Rep.#06	240 0 kbp s	1280x720	*
Rep.#07	3400 kb ps	1280x720	*
Rep.#08	4500 kbps	1920x1080	*
Rep.#09	5800 kbps	1920x1080	% •
Rep.#10	8100 kb ps	2560x1440	*
Rep. #11	11600 kbps	3840x2160	-
Rep.#12	16 800 kbps	3840x2160	%

	Encoding Bitrate	Resolution
Rep.#01	145 kbps	640x360
Rep.#02	300 kb ps	76 8x432
Rep.#03	600 kbps	960 x540
Rep.#04	900 kbps	960 x540
Rep.#05	16 00 kb ps	960 x540
Rep.#06	240 0 kbp s	1280x720
Rep.#07	3400 kb ps	1280x720
Rep.#08	4500 kbps	1920x1080
Rep.#09	5800 kbps	1920x1080
Rep.#10	8100 kb ps	2560x1440
Rep.#11	11600 kbps	3840x2160
Rep.#12	16 800 kbps	3840x2160

CPU vs GPU devices (Compression Efficiency)

UNIVERSITÄT

Bitrate Ladder Construction

CPU vs GPU devices

Fig. 1: Overview of proposed video compression pipeline. Videos are encoded into two bitstreams: content stream and model stream. Content stream encodes LSTR video with existing codec. The model stream encodes a small portion of parameter updates for the DNN model which is capable of interpolating and super-resolve decompressed video. Note that we only show two input LR frames from a long sequence in this figure for better illustration.

Fig. 3: RD curves using (a) PSNR and (b) VMAF of contentaware (CA) SR, CA VFI&SR, and CA STVSR methods for video #12.

Fig. 2: Illustration of STVSR frameworks.

Figure 4: Super-resolution DNN architectures: MDSR vs. NAS-MDSR

CPU vs GPU devices

Figure 7: Patch Selection Overview

Figure 1. Patch PSNR heatmap of two frames in a 15s video when super-resolved by a general WDSR model. A clear boundary shows that PSNR is strongly related to video content.

Figure 4. Super-resolution quality comparison with random video frame using STDO and JSTDO with baseline methods.

UNIVERSITÄT

Bitrate Ladder Construction

CPU vs GPU devices

THENA

Seele Feeter	Mathad	Detahor	FSR	CNN	ES	PCN	CA	RN	WD	SR
Scale Factor	Methou	ratches	PSNR	VMAF	PSNR	VMAF	PSNR	VMAF	PSNR	VMAF
	agDNN [30]	0 %	26.15	79.72	32.40	82.12	35.41	88.90	35.83	89.49
	NAS [31]	100.00 %	34.74	84.61	33.96	83.46	36.12	89.14	36.72	90.10
$\times 2$	LiveNAS [13]	17.50 %	33.60	80.01	33.27	83.14	35.76	88.95	36.27	89.47
	EMT [17]	17.50 %	34.26	85.13	34.49	84.52	35.89	89.03	36.71	90.02
	EPS (ours)	17.50 %	34.85	85.71	34.61	85.08	36.42	89.91	36.78	90.19
	agDNN [30]	0 %	24.15	47.95	29.44	43.01	30.86	64.09	30.69	63.92
	NAS [31]	100.00 %	29.99	51.75	29.90	50.77	31.89	69.71	31.87	69.66
$\times 4$	LiveNAS [13]	26.78 %	29.27	48.37	29.65	47.75	30.93	64.67	31.20	67.53
	EMT [17]	26.78 %	30.09	52.71	29.86	51.35	31.21	68.34	31.48	69.07
	EPS (ours)	26.78 %	30.16	54.17	30.06	52.14	31.77	69.25	31.79	69.55

Original	Bicubic	agDNN	NAS	liveNAS	EMT	EPS (ours)	Ground Truth
	E	E	R		P	14	TESTINES 14
	-						

CPU vs GPU devices

UNIVERSITÄT

Are you using or planning to use content-aware encoding technology (i.e., Per-Title)? The majority of video professionals aren't using content-aware encoding but adoption plans continue to grow. Even so, we've seen similar numbers for the past couple of years, indicating that respondents aren't following through on their plans to implement it. We attribute this to economic pressures, despite the fact that content-aware encoding would deliver cost efficiencies in the long run.

PLAYER

Feature Extraction for Live Video Streaming

-

Bitrate Ladder Construction

- The state-of-the-art spatial and temporal complexity feature is **SI-TI**.

The correlation with ground truth spatial and temporal complexity is low!!!

Video Complexity Analzyer (VCA)

- VCA introduces DCT-based spatial-temporal complexity features

Orginal Frame

Spatial Complexity

Temporal Complexity

$$E_{DCT}(c) = \sum_{i=1}^{w} \sum_{j=1}^{h} e^{\left(\frac{i \cdot j}{w \cdot h}\right)^2 - 1} |DCT_c(i-1, j-1, c)|$$

$$h = \frac{1}{C} \sum_{c=2}^{C} \frac{1}{w^2} SAD(E_{DCT}(t, c), E_{DCT}(t-1, c))$$

- Spatial complexity correlation has increased, but the temporal complexity remains low.

UNIVERSITÄT

Video Complexity Analyzer (VCA)

> The state-of-the-art spatial and temporal complexity feature is **SI-TI** [1,2].

[1] ITU-T P910 Subjective video quality assessment methods for multimedia applications.[2] SITI source code: https://github.com/Telecommunication-Telemedia-Assessment/SITI

Video Complexity Analyzer (VCA)

IVERSITÄT

- > The state-of-the-art spatial and temporal complexity feature is **SI-TI** [1,2].
- > The correlation with encoding bitrate and encoding time is low!

Video Complexity Analyzer (VCA)

DCT(i, j) is the $(i, j)^{th}$ DCT component, i + j > 00, otherwise

165

Video Complexity Analyzer (VCA)

UNIVERSITÄT

$$E = \sum_{k=0}^{C-1} \frac{H_{p,k}}{C.w^2}$$

Where C represents the number of blocks per frame.

Video Complexity Analyzer (VCA)

UNIVERSITÄT KLAGENFURT

Video Complexity Analyzer (VCA)

Spatial Complexity (E)

Temporal Complexity (h)

Video Complexity Analyzer (VCA)

UNIVERSITÄT

Average time to compute E-h for 2160p (with x86 SIMD and multi-threading).

Enhanced Video Complexity Analyzer (EVCA)

- EVCA refines the definition of the temporal complexity feature

Orginal Frame

Spatial Complexity

Temporal Complexity

$$E_{DCT}(c) = \sum_{i=1}^{w} \sum_{j=1}^{h} e^{\left(\frac{i \cdot j}{w \cdot h}\right)^2 - 1} |DCT_c(i-1, j-1, c)|$$
$$TC_c = \sum_{i=1}^{w} \sum_{j=1}^{h} e^{\left(\frac{i \cdot j}{w \cdot h}\right)^2 - 1} |DCT(i-1, j-1, c) - DCT(i-1, j-1, c-1)|$$

- Temporal complexity correlation has increased.

[Amirpour, et al,

Enhanced Video Complexity Analyzer (EVCA)

Table 2: Performance	of	spatial	complexity	features.
----------------------	----	---------	------------	-----------

Metric		Features	
	SI (SITI)	E (VCA)	SC (EVCA)
PCC	72	93	93
SRCC	78	95	95

Table 3: Performance of temporal complexity features.

Metric		Features	
	TI (SITI)	h (VCA)	TC (EVCA)
PCC	62	61	77
SRCC	73	77	85

Feature Extraction							
SITI	VCA	EVCA					
1538 fps	1502 fps	1250 fps					

Feature Extraction for Live Video Streaming

SITI VCA EVCA

Feature Extraction for Live Video Streaming

Feature Extraction for Live Video Streaming

		2	x265, QP=	22	2	x265, QP=	37		x265, QP=	-12		x264, QP=	:22
	Metric	PCC	SRCC	KRCC									
Unsupervised	SI	0.72	0.76	0.56	0.82	0.87	0.69	0.71	0.76	0.56	0.74	0.80	0.61
Ulisupervised	E	0.91	0.93	0.78	0.95	0.95	0.83	0.91	0.93	0.78	0.93	0.95	0.82
	AlexNet	0.83	0.83	0.63	0.81	0.83	0.64	0.83	0.83	0.65	0.83	0.83	0.64
Supervised	VGG11	0.92	0.92	0.76	0.89	0.91	0.74	0.92	0.92	0.76	0.92	0.92	0.76
$(D_{een}VCA)$	ResNet-18	0.94	0.95	0.81	0.94	0.96	0.83	0.94	0.95	0.81	0.95	0.95	0.82
(DeepvCA)	MobileNetV2	0.97	0.98	0.87	0.95	0.96	0.83	0.97	0.97	0.86	0.95	0.95	0.82
	EfficientNet-b0	0.97	0.98	0.88	0.95	0.96	0.84	0.97	0.98	0.87	0.97	0.98	0.88

TABLE I. COMPATISON OF Spanal COMPLEXITY MEET	TABLE I:	Comparison	of spatial	complexity	metrics
---	----------	------------	------------	------------	---------

TABLE II: Comparison of temporal complexity metrics.

		x265, QP=22		x265, QP=37			x265, QP=12			x264, QP=22			
Metric		PCC	SRCC	KRCC	PCC	SRCC	KRCC	PCC	SRCC	KRCC	PCC	SRCC	KRCC
Unsupervised	TI	0.43	0.46	0.32	0.21	0.39	0.27	0.57	0.53	0.68	0.42	0.45	0.32
Ulisupervised	h	0.46	0.52	0.37	0.24	0.47	0.32	0.58	0.56	0.41	0.45	0.52	0.37
	MobileNetV2 (block 11)	0.79	0.83	0.64	0.49	0.64	0.46	0.84	0.86	0.68	0.77	0.81	0.63
Supervised	MobileNetV2 (block 4)	0.80	0.83	0.65	0.54	0.65	0.47	0.84	0.87	0.69	0.79	082	0.64
$(D_{acn}VCA)$	EfficientNet-b0 (block 6)	0.77	0.81	0.63	0.49	0.59	0.43	0.78	0.84	0.66	0.74	0.79	0.61
(DeepvCA)	EfficientNet-b0 (block 4)	0.81	0.84	0.66	0.55	0.65	0.48	0.83	0.86	0.68	0.79	0.83	0.65
	EfficientNet-b0 (block 2)	0.81	0.85	0.68	0.57	0.67	0.50	0.83	0.87	0.68	0.80	0.84	0.67
	3D CNN: R(2+1)D-18	0.84	0.86	0.69	0.64	0.73	0.54	0.84	0.87	0.69	0.83	0.85	0.68

Open-source Software

	Device	Description
VCA	CPU	Optimized software
EVCA	GPU	Enhanced temporal complexity
DeepVCA	GPU	Enhanced Temporal complexity

Motion-Inspired Image Complexity Metric

Figure 5: The examples of images in IC9600 database, and corresponding text prompts generated by InstructBLIP [11] (Vicuna-7B). The video frames are sampled from three state-of-the-art image-to-video models (i.e., CogVideoX [66], CogVideoX1.5 [66], and Vgen [66].

UNIVERSITÄT

Bitrate Ladder Construction Live Video Streaming

Live Video Streaming

Live Video Streaming

Table 1: Results of OPTE against fixed bitrate ladder approach.

Dataset	Video	f	SI	TI	E	h	$ s_G - s _2$	BDR_V	BDR_P
MCML	Bunny	30	23.38	6.43	23.03	4.88	0.01	-39.48%	-32.25%
MCML	Characters	30	50.43	29.85	41.44	29.21	0.04	-51.90%	-68.81%
MCML	Crowd	30	33.76	10.13	33.11	12.22	0.01	-29.82%	-14.18%
MCML	Dolls	30	16.88	19.91	10.47	0.27	0.02	-1.43%	-8.49%
SJTU	BundNightScape	30	48.82	7.06	54.90	11.62	0.02	-61.22%	-60.86%
SJTU	Fountains	30	43.37	11.42	60.90	23.02	0.02	-32.93%	-8.49%
SJTU	TrafficFlow	30	33.57	13.80	58.93	15.83	0.02	-50.54%	-40.90%
SJTU	TreeShade	30	52.88	5.29	80.19	8.83	0.01	-47.76%	-38.55%
VQEG	CrowdRun	50	50.77	22.33	96.55	33.33	0.01	-8.50%	-1.90%
VQEG	DucksTakeOff	50	47.77	15.10	119.12	30.88	0.01	-2.99%	-2.79%
VQEG	IntoTree	50	24.41	12.09	74.45	21.95	0.03	-26.50%	-5.75%
VQEG	OldTownCross	50	29.66	11.62	92.75	22.06	0.02	-30.91%	-22.53%
VQEG	ParkJoy	50	62.78	27.00	102.80	52.15	0.02	-12.08%	-2.62%
JVET	CatRobot	60	44.45	11.84	56.36	14.25	0.01	-13.43%	-5.95%
JVET	DaylightRoad2	60	40.51	16.21	66.40	20.13	0.02	-27.52%	-9.35%
JVET	FoodMarket4	60	38.26	17.68	50.71	20.71	0.02	-18.11%	-3.74%
		0.02	-28.45%	-20.45%					

Live Video Streaming

1.6Mbps 1080p 1.6Mbps 540p

Live Video Streaming

Fig. 1: Two-pass encoding architecture.

Fig. 2: ETPS architecture. The dashed blue line represents the first-pass while the video encoder block represents the second-pass encode.

Bitrate Ladder Construction Live Video Streaming

UNIVERSITÄT

Table 1: Results of ETPS against Constant Bitrate (CBR) encoding and two-pass average bitrate encoding schemes.

						Constant bitrate (CBR)			Two-pass average bitrate			
Dataset	Video	E	h	$ c_G - \hat{c} _2$	τ_p (in ms)	BDR_P	BDR_V	ΔT	BDR_P	BDR_V	ΔT	
MCML [18]	Basketball	15.75	9.69	0.86	8	-17.80%	-14.36%	0.43%	-0.48%	0.50%	-45.15%	
MCML	Bunny	23.03	4.89	1.58	7	-9.92%	-9.09%	0.78%	0.04%	-1.14%	-43.88%	
MCML	Crowd	33.11	7.03	1.58	7	-7.63%	-1.47%	0.56%	0.75%	1.05%	-43.34%	
MCML	Dolls	19.91	12.22	0.86	8	-5.73%	-4.05%	1.01%	1.21%	1.97%	-45.26%	
MCML	Flowers	12.01	10.47	0.50	7	-8.44%	-7.12%	-0.59%	0.38%	0.49%	-43.90%	
MCML	Park	26.07	27.34	0.71	9	-5.16%	-2.62%	1.10%	0.16%	0.87%	-44.27%	
SJTU [19]	BundNightScape	54.90	11.62	1.93	8	-14.63%	-13.51%	-1.62%	-1.11%	-1.27%	-40.91%	
SJTU	CampfireParty	51.50	42.38	1.58	8	-4.66%	-3.66%	-1.72%	-0.51%	-0.35%	-43.04%	
SJTU	Runners	104.30	17.44	1.32	7	-8.14%	-2.44%	-1.34%	-0.77%	-1.08%	-42.69%	
SJTU	TallBuildings	94.35	7.70	1.65	8	-17.30%	-12.54%	-1.02%	0.89%	0.59%	-43.37%	
SJTU	TrafficAndBuilding	60.54	11.55	1.87	8	-15.41%	-9.91%	-0.43%	0.06%	-2.42%	-43.96%	
SJTU	TrafficFlow	58.93	8.61	1.32	8	-15.66%	-1.17%	0.74%	1.19%	1.43%	-43.86%	
SJTU	TreeShade	80.19	15.83	0.50	8	-11.82%	-6.85%	-0.79%	0.52%	0.59%	-44.75%	
SJTU	Wood	114.26	8.83	0.71	8	-10.14%	-21.58%	0.52%	1.34%	1.88%	-44.50%	
Average				1.02	8	-10.89%	-8.60%	0.65%	0.26%	0.38%	-43.78%	

Fig. 4: The average bitrate in a streaming session where MCML sequences (*cf.* Table 1) are encoded using ETPS and are streamed at intervals of four seconds for target average bitrates 8, 12, 17, 20 Mbps.

Live Video Streaming

Fig. 1. The workflow of LiveESTR method.

~		BD-Rate (%)			BD-VMAF			BDDE (%)			BDEE (%)	
'	Static ladder	Ground truth	LiveESTR									
1.0	50.4	-6.4	-0.9	-6.0	1.5	0.8	-30.7	-25.7	-29.4	-37.2	-16.1	-18.6
2.0	50.4	-2.2	2.1	-6.0	1.0	0.3	-30.7	-30.0	-29.7	-37.2	-22.5	-22.6
3.0	50.4	1.7	5.9	-6.0	0.4	-0.3	-30.7	-33.5	-32.6	-37.2	-27.8	-28.5
4.0	50.4	5.2	11.0	-6.0	-0.2	-1.1	-30.7	-36.0	-36.9	-37.2	-31.9	-33.7
5.0	50.4	9.8	16.0	-6.0	-0.9	-1.8	-30.7	-37.3	-38.2	-37.2	-34.1	-35.3

THE PERFORMANCE COMPARISON OF LIVEESTR METHOD WITH A STATIC BITRATE LADDER AND GROUND TRUTH METHODS IN DIFFERENT THRESHOLDS

Bitrate Ladder Construction Live Video Streaming

Table 5. Performance comparison in YPSNR / VMAF of the considered models on the proposed dataset with HEVC encoder. The top result for each encoder type is highlighted in boldface.

E	ncoder type			HEVC softv	vare encoding		
N	lodel \ Metric	R2 ↑	SROCC ↑	PLCC ↑	Accuracy ↑	BD-BR vs EEL \downarrow	BD-BR vs SL↓
	ExtraTrees	0.6479 / 0.4929	0.6730 / 0.6286	0.8154 / 0.7131	0.8852 / 0.8685	1.776% / 2.545%	-5.997% / -5.583%
and	Random Forests	0.6079 / 0.4293	0.6452 / 0.6087	0.7847 / 0.6679	0.8814 / 0.8626	2.365% / 2.670%	-5.886% / -5.721%
÷	XGBoost	0.5659 / 0.3877	0.6312 / 0.5867	0.7767 / 0.6541	0.8775 / 0.8606	2.909% / 3.331%	-5.524% / -4.943%
2	LightGBM	0.5487 / 0.4095	0.6436 / 0.5762	0.7518 / 0.6496	0.8665 / 0.8397	2.023% / 3.841%	-5.293% / -4.785%
	ExtraTrees	0.2700 / 0.3250	0.4941 / 0.5341	0.5411 / 0.5832	0.8354 / 0.8396	3.448% / 4.037%	-4.805% / -5.179%
and	Random Forests	0.2627 / 0.2301	0.5083 / 0.5363	0.5303 / 0.5060	0.8329 / 0.8303	3.870% / 4.310%	-4.784% / -4.803%
Live-H	XGBoost	0.2507 / 0.1920	0.5181 / 0.4978	0.5317 / 0.4471	0.8303 / 0.8299	3.866% / 4.041%	-4.828% / -4.585%
	LightGBM	0.2438 / 0.1687	0.5172 / 0.4279	0.5088 / 0.4169	0.8315 / 0.8149	3.840% / 4.188%	-4.889% / -4.531%
 2	DensNet169	0.3306 / 0.3139	0.3778 / 0.5374	0.5703 / 0.5250	0.8793 / 0.8395	3.300% / 3.181%	-4.915% / -4.823%
atur	VGG16	0.2787 / 0.2511	0.3832 / 0.5531	0.5767 / 0.5083	0.8637 / 0.8227	3.378% / 3.329%	-4.845% / -4.751%
å.	ResNet-50	0.5652 / 0.3204	0.5057 / 0.5802	0.6349 / 0.5400	0.8805 / 0.8539	2.755% / 2.999%	-5.387% / -5.012%
ã	ConvNeXtBase	0.3188 / 0.2321	0.4788 / 0.4650	0.5884 / 0.5005	0.8756 / 0.8252	3.600% / 3.434%	-4.892% / -4.712%
E	ncoder type			HEVC hardy	ware encoding		
N	lodel \ Metric	R2 ↑	SROCC ↑	PLCC ↑	Accuracy ↑	BD-BR vs EEL \downarrow	BD-BR vs SL \downarrow
	ExtraTrees	0.4728 / 0.3822	0.5927 / 0.4424	0.7027 / 0.6452	0.8373 / 0.7815	2.644% / 4.850%	-5.319% / -5.068%
and	Random Forests	0.4113 / 0.3481	0.5475 / 0.3934	0.6527 / 0.6057	0.8278 / 0.7800	3.292% / 4.724%	-4.896% / -4.932%
H-G	XGBoost	0.4139 / 0.2794	0.5219 / 0.3452	0.6536 / 0.5462	0.8228 / 0.7669	3.880% / 5.370%	-4.916% / -4.472%
\$	LightGBM	0.3039 / 0.1876	0.5304 / 0.3347	0.6428 / 0.4816	0.8029 / 0.7371	4.501% / 5.915%	-4.922% / -3.728%
	ExtraTrees	0.3188 / 0.2321	0.4788 / 0.4650	0.5884 / 0.5005	0.7894 / 0.7715	4.610% / 5.100%	-4.209% / -3.533%
and	Random Forests	0.2854 / 0.1866	0.4879 / 0.3989	0.5612 / 0.4020	0.7841 / 0.7613	5.205% / 5.921%	-3.951% / -3.258%
-w-	XGBoost	0.2490 / 0.1391	0.4843 / 0.3629	0.5293 / 0.4686	0.7793 / 0.7627	5.049% / 5.930%	-4.094% / -2.807%
2	LightGBM	0.3039 / 0.1876	0.5304 / 0.3347	0.6428 / 0.4816	0.8029 / 0.7371	4.501% / 5.915%	-4.922% / -3.728%
8	DensNet169	0.3750 / 0.4408	0.5710 / 0.5477	0.6109 / 0.7133	0.8272 / 0.8143	3.059% / 4.333%	-4.967% / -5.018%
atur	VGG16	0.3422 / 0.3559	0.5584 / 0.4899	0.6159 / 0.6239	0.7649 / 0.7529	3.750% / 5.335%	-4.807% / -3.931%
sep fe	ResNet-50	0.3466 / 0.4229	0.5965 / 0.5251	0.6354 / 0.7025	0.8278 / 0.8003	2.811% / 4.150%	-5.139% / -5.533%
ă	ConvNeXtBase	0.2440 / 0.3490	0.5013 / 0.5127	0.5284 / 0.6253	0.7420 / 0.7544	3.916% / 5.417%	-4.745% / -3.590%

Fig. 6. The overall framework of the proposed DNN methods. The feature extraction module extracts spatial features y_i^j from patches x_i^j . The spatial and temporal pooling modules aggregate features into a final vector \bar{y} . Finally, the regression module uses the final vector \bar{y} to predict the cross-over bitrates P_k^j .

Bitrate Ladder Construction Live Video Streaming

Table 5. Performance comparison in YPSNR / VMAF of the considered models on the proposed dataset with HEVC encoder. The top result for each encoder type is highlighted in boldface.

E	ncoder type			HEVC softv	vare encoding				
Μ	lodel \ Metric	R2 ↑	SROCC ↑	PLCC ↑	Accuracy ↑	BD-BR vs EEL \downarrow	BD-BR vs SL↓		
	ExtraTrees	0.6479 / 0.4929	0.6730 / 0.6286	0.8154 / 0.7131	0.8852 / 0.8685	1.776% / 2.545%	-5.997% / -5.583%		
land	Random Forests	0.6079 / 0.4293	0.6452 / 0.6087	0.7847 / 0.6679	0.8814 / 0.8626	2.365% / 2.670%	-5.886% / -5.721%		
à	XGBoost	0.5659 / 0.3877	0.6312 / 0.5867	0.7767 / 0.6541	0.8775 / 0.8606	2.909% / 3.331%	-5.524% / -4.943%		
2	LightGBM	0.5487 / 0.4095	0.6436 / 0.5762	0.7518 / 0.6496	0.8665 / 0.8397	2.023% / 3.841%	-5.293% / -4.785%		
 0	ExtraTrees	0.2700 / 0.3250	0.4941 / 0.5341	0.5411 / 0.5832	0.8354 / 0.8396	3.448% / 4.037%	-4.805% / -5.179%		
fand	Random Forests	0.2627 / 0.2301	0.5083 / 0.5363	0.5303 / 0.5060	0.8329 / 0.8303	3.870% / 4.310%	-4.784% / -4.803%		
We-H	XGBoost	0.2507 / 0.1920	0.5181 / 0.4978	0.5317 / 0.4471	0.8303 / 0.8299	3.866% / 4.041%	-4.828% / -4.585%		
1	LightGBM	0.2438 / 0.1687	0.5172 / 0.4279	0.5088 / 0.4169	0.8315 / 0.8149	3.840% / 4.188%	-4.889% / -4.531%		
 z	DensNet169	0.3306 / 0.3139	0.3778 / 0.5374	0.5703 / 0.5250	0.8793 / 0.8395	3.300% / 3.181%	-4.915% / -4.823%		
atur	VGG16	0.2787 / 0.2511	0.3832 / 0.5531	0.5767 / 0.5083	0.8637 / 0.8227	3.378% / 3.329%	-4.845% / -4.751%		
e e	ResNet-50	0.5652 / 0.3204	0.5057 / 0.5802	0.6349 / 0.5400	0.8805 / 0.8539	2.755% / 2.999%	-5.387% / -5.012%		
õ	ConvNeXtBase	0.3188 / 0.2321	0.4788 / 0.4650	0.5884 / 0.5005	0.8756 / 0.8252	3.600% / 3.434%	-4.892% / -4.712%		
E	ncoder type		HEVC hardware encoding						
Μ	lodel \ Metric	R2 ↑	SROCC ↑	PLCC ↑	Accuracy ↑	BD-BR vs EEL \downarrow	BD-BR vs SL \downarrow		
	ExtraTrees	0.4728 / 0.3822	0.5927 / 0.4424	0.7027 / 0.6452	0.8373 / 0.7815	2.644% / 4.850%	-5.319% / -5.068%		
fand	Random Forests	0.4113 / 0.3481	0.5475 / 0.3934	0.6527 / 0.6057	0.8278 / 0.7800	3.292% / 4.724%	-4.896% / -4.932%		
ä	XGBoost	0.4139 / 0.2794	0.5219 / 0.3452	0.6536 / 0.5462	0.8228 / 0.7669	3.880% / 5.370%	-4.916% / -4.472%		
>	LightGBM	0.3039 / 0.1876	0.5304 / 0.3347	0.6428 / 0.4816	0.8029 / 0.7371	4.501% / 5.915%	-4.922% / -3.728%		
	ExtraTrees	0.3188 / 0.2321	0.4788 / 0.4650	0.5884 / 0.5005	0.7894 / 0.7715	4.610% / 5.100%	-4.209% / -3.533%		
and	Random Forests	0.2854 / 0.1866	0.4879 / 0.3989	0.5612 / 0.4020	0.7841 / 0.7613	5.205% / 5.921%	-3.951% / -3.258%		
W-H	XGBoost	0.2490 / 0.1391	0.4843 / 0.3629	0.5293 / 0.4686	0.7793 / 0.7627	5.049% / 5.930%	-4.094% / -2.807%		
2	LightGBM	0.3039 / 0.1876	0.5304 / 0.3347	0.6428 / 0.4816	0.8029 / 0.7371	4.501% / 5.915%	-4.922% / -3.728%		
5	DensNet169	0.3750 / 0.4408	0.5710 / 0.5477	0.6109 / 0.7133	0.8272 / 0.8143	3.059% / 4.333%	-4.967% / -5.018%		
atur	VGG16	0.3422 / 0.3559	0.5584 / 0.4899	0.6159 / 0.6239	0.7649 / 0.7529	3.750% / 5.335%	-4.807% / -3.931%		
eble	ResNet-50	0.3466 / 0.4229	0.5965 / 0.5251	0.6354 / 0.7025	0.8278 / 0.8003	2.811% / 4.150%	-5.139% / -5.533%		
Ď	ConvNeXtBase	0.2440 / 0.3490	0.5013 / 0.5127	0.5284 / 0.6253	0.7420 / 0.7544	3.916% / 5.417%	-4.745% / -3.590%		

Fig. 6. The overall framework of the proposed DNN methods. The feature extraction module extracts spatial features y_i^j from patches x_i^j . The spatial and temporal pooling modules aggregate features into a final vector \bar{y} . Finally, the regression module uses the final vector \bar{y} to predict the cross-over bitrates \hat{P}_k .

PLAYER

PLAYER

PLAYER

PLAYER

PLAYER

PLAYER

PLAYER

- Transcoding is expensive:
 - Optimal Encoding Decision
 - Quantization and Entropy Encoding

- Transcoding is expensive:

UNIVERSITÄT

- Optimal Encoding Decision
- Quantization and Entropy Encoding

- Transcoding is expensive:
 - Optimal Encoding Decision
 - Quantization and Entropy coding

- Finding the optimal CTU partitioning takes the majority of the encoding time
- Signaling the optimal CTU partitioning in bitsream requires minimal bits

- The optimal CTU partitioning are stored as metadata in Edge servers -
- During the transcoding, they are used to avoid the brute-force search process -

The optimal CU partitioning

PLAYER

CD-LwTE architecture.

PLAYER

Quality of Experience VQM4HAS: A Real-time Video Quality Metric for HAS

TABLE I: Description of encoding statistics when -csv-log-level is greater than or equal to 1.

Parameter	Description	Used for evaluation	Name
Encode Order	The frame order in which the encoder encodes.	No	
Туре	Slice type of the frame.	No	
POC	Picture Order Count - The display order of the frames.	No	
QP	Quantization Parameter decided for the frame.	Yes	qp
Bits	Number of bits consumed by the frame.	Yes	bit
Scenecut	1 if the frame is a scenecut, 0 otherwise.	No	
RateFactor	Applicable only when CRF is enabled.	No	
BufferFill	Bits available for the next frame. Includes bits carried over from the current frame.	No	
BufferFillFinal	Buffer bits available after removing the frame out of CPB.	No	
UnclippedBufferFillFinal	Unclipped buffer bits available after removing the frame out of CPB only used for csv logging purposes.	No	
Latency	Latency in terms of number of frames between when the frame was given in and when the frame is given out.	No	
Ref lists	POC of references in lists 0 and 1 for the frame.	No	

Quality of Experience VQM4HAS: A Real-time Video Quality Metric for HAS

Parameter	Description	Used for evaluation	Name
	Analysis statistics		
CU Statistics	Percentage of CU modes.	No	
Distortion	Average luma and chroma distortion.	Yes	luma_dist, chroma_dist
Psy Energy	Average psy energy calculated as the sum of absolute difference between source and recon energy.	Yes	psy_energy
Residual Energy	Average residual energy.	Yes	res_energy
Luma/Chroma Values	minimum, maximum and average luma and chroma values of source for each frame.	Yes	luma_avg, cr_avg,cb_avg
PU Statistics	Percentage of PU modes at each depth.	No	
	Performance statistics		
DecideWait ms	number of milliseconds the frame encoder had to wait.	No	
Row0Wait ms	number of milliseconds since the frame encoder received a frame to encode before its first row of CTUs is allowed to	No	
	begin compression.		
Wall time ms	number of milliseconds between the first CTU being ready to be compressed and the entire frame being compressed and	No	
	the output NALs being completed.		
Ref Wait Wall ms	number of milliseconds between the first reference row being available and the last reference row becoming available.	No	
Total CTU time ms	the total time (measured in milliseconds) spent by worker threads compressing and filtering CTUs for this frame.	Yes	cpu_time
Stall Time ms	the number of milliseconds of the reported wall time that were spent with zero worker threads, aka all compression was	No	
	completely stalled.		
Total frame time	Total time spent to encode the frame.	Yes	frame_time
Avg WPP	the average number of worker threads working on this frame, at any given time.	No	
Row Blocks	the number of times a worker thread had to abandon the row of CTUs it was encoding.	No	

VQM4HAS: A Real-time Video Quality Metric for HAS

TABLE IV: PCC for VQM4HAS when predicting per-segment VMAF scores.

	Representation ID	1	2	3	4	5	6	7	8	9	10	11	12
Model	Linear	0.83	0.86	0.90	0.91	0.93	0.95	0.95	0.95	0.95	0.94	0.92	0.90
	Random Forest	0.87	0.90	0.94	0.94	0.95	0.95	0.95	0.96	0.95	0.95	0.95	0.94

Fig. 4: (a) The feature importance of the features used to predict VMAF scores for all representations. SHAP summary plot for (b) the lowest and (c) highest bitrate representations.

	Resolution	540p	1080p	2160p
	PSNR	0.32	0.56	0.51
	SSIM	0.46	0.68	0.66
Method	VMAF	0.73	0.89	0.83
	P.1204.3	0.94	0.94	0.90
	VQM4HAS	0.96	0.93	0.93

Fig. 9: (a) The time complexity of different methods when computing 12 representations of a 5-second video encoded with the HLS ladder parameters. The complexity breakdown across representations for (b) *VQM4HAS*, (c) VMAF, and (d) P.1204.3.

Impact of Viewing Distance [In-Lab Subjective Test]

Impact of Viewing Distance [In-Lab Subjective Test]

Fig. 5: Normalized Pearson correlation with subjective ratings for different objective quality metrics as function of distance (PCC at d1=100%).

What Matters to Human Eye?

INTENSE: In-Depth Studies on Stall Events and Quality Switches and Their Impact on the Quality of Experience in HTTP Adaptive Streaming

BABAK TARAGHI[®], (Member, IEEE), MINH NGUYEN, (Member, IEEE), HADI AMIRPOUR[®], (Member, IEEE), AND CHRISTIAN TIMMERRE[®], (Senior Member, IEEE) Cirisius Depter Laborary XTIENA, Alber-Aidra Linkeriki Kagendur an Worknere, Austra

What Matters to Human Eye?

INTENSE: In-Depth Studies on Stall Events and Quality Switches and Their Impact on the Quality of Experience in HTTP Adaptive Streaming

BABAK TARAGHI[®], (Member, IEEE), MINH NGUYEN, (Member, IEEE), HADI AMIRPOUR[®], (Member, IEEE), AND CHRISTIAN TIMMERRE[®], (Senior Member, IEEE) Ciristia Depter Laborary XTIEVA, Alber-Aidra Librariti Risquirdt an Worthener, Austra

What Matters to Human Eye?

BABAK TARAGHI[®], (Member, IEEE), MINH NGUYEN, (Member, IEEE), HADI AMIRPOUR[®], (Member, IEEE), AND CHRISTIAN TIMMERER[®], (Senior Member, IEEE) Christia Doper Latorary ATHEVA, Alper-Adria Universiti Risquirett an Wathernee, Austria

The analysis results demonstrate a preference for a longer stall event over stall events with high frequency but with the same total duration as the longer stall event.

What Matters to Human Eye?

BABAK TARAGHI[®], (Member, IEEE), MINH NGUYEN, (Member, IEEE), HADI AMIRPOUR[®], (Member, IEEE), AND CHRISTIAN TIMMERER[®], (Senior Member, IEEE) Christia Depter Laborary ATTENA, Alber-Aidr-Laboratik Rikgender an Worknere, Austria

- It can be seen that stall events have a minor penalty on the QoE when the quality of videos is low.
- for the middle and high-quality videos, the stall event occurrence has a higher penalty on the perceived QoE than the same stall event at a low-quality video.

Current & Future Work + Open Challenges

- HTTP adaptive streaming: DASH, HLS, CMAF
- Video coding for HAS (bitrate ladder optimizations) has been extensively researched, some niche problems seeking for solutions
- Media over QUIC needs more attention in the multimedia research community !!
- New (immersive) modalities & coding formats in its infancy wrt streaming !!
- (Generative) AI for video streaming !!

https://athena.itec.aau.at/

Video Coding Advancements in HTTP Adaptive Streaming

IEEE ICME 2025, June 30, 2025

Hadi Amirpour Christian Timmerer

Alpen-Adria Universität Klagenfurt, Austria Christian Doppler Laboratory ATHENA

Video Coding for HAS

The same video

Encoded independently

Encoding decisions can be reused

Video Coding for HAS

Fast Multi-rate Encoding

reference encoding

Video Coding for HAS

Fast Multi-rate Encoding

reference encoding

dependent encoding

Efficient Multi-Rate Video Encoding for HEVC-Based Adaptive HTTP Streaming, TCSVT 2016

Table 1. Comparison of encoding results

0	DD		
Sequence	BD-rate	BD-PSNR	ΔT
PeopleStreet (2560×1600)	0.85%	-0.04%	-19.02%
Kimono (1920×1080)	0.75%	-0.02%	-43.10%
<i>ParkScene</i> (1920×1080)	0.43%	-0.01%	-35.79%
BQMall (832×480)	0.57%	-0.02%	-28.60%
PartyScene (832×480)	0.26%	-0.01%	-22.10%
BasketballPass (416×240)	0.62%	-0.03%	-35.12%
BlowingBubbles (416×240)	0.43%	-0.02%	-20.03%
RaceHorses (416×240)	0.55%	-0.03%	-12.67%
Average	0.56%	-0.02%	-27.05%

(a) QP 22

(b) QP 24

Sequence	BD-rate	BD-PSNR	$\Delta \mathbf{T}$
BlueSky	0.07%	-0.003 dB	-4.17%
CrowdRun	-0.08%	0.003 dB	-4.89%
DucksTakeOff	-0.09%	0.002 dB	-5.60%
Kimono	-0.06%	0.002 dB	-6.25%
ParkJoy	-0.20%	0.008 dB	-5.71%
ParkScene	-0.05%	0.002 dB	-2.73%
PedestrianArea	-0.19%	0.006 dB	-8.75%
Riverbed	-0.05%	0.002 dB	-11.58%
RushHour	-0.09%	0.002 dB	-6.16%
Sunflower	-0.52%	0.016 dB	-6.25%
Average	-0.12%	0.004 dB	-6.21%

235

reference encoding

dependent encoding

Fig. 2: Network architecture used for depth 0 classifier. The numbers in the boxes are in the following format from left to right: *Channel count @ Width×Height of channel* for convolution layers, *output size* for fully connected and softmax layers, and *input size* for the feature vector. Red dotted section is removed in the depth 1 classifier due to variance in the input size. V, U, and V input sizes and intermediate channel sizes vary depending on the depth 1 classifier).

Fig. 3: Normalized average time-complexities in different QP levels using different methods.

dependent encoding

Fig. 2: Network architecture used for depth 0 classifier. The numbers in the boxes are in the following format from left to right: *Channel count @ Width×Height of channel* for convolution layers, *output size* for fully connected and softmax layers, and *input size* for the feature vector. Red dotted section is removed in the depth 1 classifier due to variance in the input size. Y, U, and V input sizes and intermediate channel sizes vary depending on the depth level (halved for depth 1 classifier).

TABLE I: Encoding Results	or Test Sequences	Using the Lower	Bound and the	FaME-ML
---------------------------	-------------------	-----------------	---------------	---------

			Lower Boun	d		FaME-ML				
Sequence	ΔT	BDR_P	$\mathbf{BDR}_P / \Delta T$	BDR_V	$\mathbf{BDR}_V / \Delta T$	ΔT	BDR_P	$\mathbf{BDR}_P / \Delta T$	BDR_V	$\mathbf{BDR}_V / \Delta T$
DucksTakeOff	9.84 %	0.346 %	3.51	0.092 %	0.93	36.42 %	0.305 %	0.84	0.119 %	0.32
InToTree	3.11 %	0.368 %	11.83	0.688 %	22.12	54.59 %	1.325 %	2.42	0.511 %	0.93
OldTownCross	4.17 %	0.457 %	10.95	0.191 %	4.58	52.89 %	0.955 %	1.80	0.077 %	0.14
ParkJoy	21.23 %	0.404 %	1.90	0.083 %	0.39	36.04 %	0.920 %	2.55	0.250 %	0.69
RedKayak	12.72 %	0.764 %	6.01	0.282 %	2.21	22.98 %	0.525 %	2.28	0.184 %	0.81
RushFieldCuts	17.90 %	0.471 %	2.63	0.101 %	0.56	40.60 %	1.214 %	2.99	0.456 %	1.12
ControlledBurn	2.30 %	0.703 %	30.56	0.146 %	6.34	46.91 %	0.679 %	1.47	0.493 %	1.05
ParkRunning3	16.81 %	0.475 %	2.82	0.086 %	0.51	39.67 %	1.178 %	2.97	0.507 %	1.27
Average	11.01 %	0.498 %	8.77	0.208 %	4.70	41.26 %	0.887 %	2.16	0.324 %	0.79

reference encoding

reference encoding

onv (3x3 - Zero Padding) + Conv (3x3 - Zero Padding) Feature Processing CNN (x11) Feature Input eLU + MaxPool + Rel II ony (1x1 - No Padding) CNN Input (Y) Softmax 1x1 Fully Connec Conv (8x8 - No Padding) CNN Input (U or V) Layer **Texture Processing CNN** 44 4 @ 8 @ 64x64 64x64 64 @ 128 @ 256 @ 64 @ 4 @ 1x1 → 1x1 4 @ 1 @ 64x64 → 4 @ 64x64 1 @ 64x64

FIGURE 17. Modified FaRes-ML CNN architecture for minimum depth prediction. The intermediate output vectors now have 4 dimensions, one for each depth level.

FIGURE 8. Flowchart of the FaRes-ML.

Fast multi-resolution and multi-rate encoding for HTTP adaptive streaming using machine learning, OJSP 2021

reference encoding

Formence		Lower Bound						FaRes-ML			
Seq	uence	ΔT	BDR_P	BDR_V	BD _{PSNR}	BD_{VMAF}	ΔT	BDR_P	BDR_V	BDPSNR	BD_{VMAF}
	Basketball	4.42 %	2.85 %	3.35 %	-0.084	-0.412	43.47 %	2.18 %	2.70 %	-0.068	-0.312
	Bunny	3.64 %	1.44 %	1.10 %	-0.051	-0.165	66.64 %	3.91 %	4.15 %	-0.139	-0.520
2010-2160	Characters	2.62 %	6.92 %	4.84 %	-0.193	-0.095	53.76 %	2.76 %	1.44 %	-0.071	-0.079
5840X2100	Contsruction	1.67 %	1.70 %	2.08 %	-0.047	-0.181	55.57 %	4.08 %	5.03 %	-0.095	-0.357
	Dolls	3.24 %	2.48 %	2.60 %	-0.061	-0.323	53.28 %	3.45 %	4.09 %	-0.081	-0.443
	Lake	2.74 %	0.14 %	0.04 %	-0.006	-0.011	42.46 %	1.76 %	1.57 %	-0.074	-0.274
Ave	erage	3.06 %	2.59 %	2.34 %	-0.074	-0.198	52.53 %	3.02 %	3.16 %	-0.088	-0.331
	Basketball	5.12 %	0.98 %	0.90 %	-0.041	-0.175	45.27 %	3.47 %	3.14 %	-0.150	-0.538
	Bunny	3.15 %	0.50 %	0.49 %	-0.020	-0.031	60.52 %	2.57 %	2.96 %	-0.100	-0.324
1920x1080	Characters	3.65 %	2.18 %	1.01 %	-0.076	-0.018	49.73 %	0.34 %	0 %	-0.011	-0.024
	Construction	2.12 %	0.94 %	1.03 %	-0.034	-0.156	55.23 %	2.09 %	2.41 %	-0.070	-0.192
	Dolls	4.42 %	1.10 %	1.57 %	-0.034	-0.236	49.67 %	3.93 %	4.73 %	-0.120	-0.580
	Lake	2.76 %	0.12 %	0.04 %	-0.004	-0.004	37.35 %	1.39 %	1.49 %	-0.054	-0.253
Ave	erage	3.53 %	0.97 %	0.84 %	-0.035	-0.103	49.63 %	2.30 %	2.46 %	-0.084	-0.318
	Basketball	4.55 %	0.06 %	0.21 %	-0.003	-0.027	32.28 %	2.11 %	3.03 %	-0.102	-0.433
	Bunny	2.53 %	0.13 %	0.26 %	-0.006	-0.044	45.21 %	1.18 %	2.11 %	-0.052	-0.229
0/0 510	Characters	2.84 %	0.31 %	0.75 %	-0.007	-0.013	39.44 %	0.01 %	0 %	-0.003	-0.038
960x540	Construction	1.64 %	0.11 %	0.60 %	-0.004	-0.059	43.42 %	0.21 %	0.71 %	-0.007	-0.056
	Dolls	3.65 %	0.14 %	0.51 %	-0.005	-0.018	30.90 %	0.57 %	0.66 %	-0.020	-0.070
	Lake	2.50 %	0.02 %	0.29 %	-0.001	-0.036	28.66 %	0.89 %	2.35 %	-0.034	-0.317
Ave	erage	2.95 %	0.12 %	0.43 %	-0.004	-0.032	36.65 % 0.83 % 1.48 % -0.036		-0.191		
Total	Average	3.18 %	1.22 %	1.20 %	-0.037	-0.111	46.27 %	2.05 %	2.36 %	-0.069	-0.280

FIGURE 8. Flowchart of the FaRes-ML.

Fast multi-resolution and multi-rate encoding for HTTP adaptive streaming using machine learning, OJSP 2021

reference encoding

Fig. 12. Relative encoding time (in percentage) of all bitrate representations for the considered multiencoding schemes. The encoding times are normalized by the stand-alone encoding time of the 25 Mbps representation.

EMES: Efficient Multi-encoding Schemes for HEVC-based Adaptive Bitrate Streaming, ACM TOMM 2023