
ES-HAS: An Edge- and SDN-Assisted Framework for HTTP
Adaptive Video Streaming

Reza Farahani, Farzad Tashtarian, Alireza Erfanian, Christian Timmerer, Mohammad Ghanbari ∗
and Hermann Hellwagner

Christian Doppler Laboratory ATHENA, Alpen-Adria-Universität, Klagenfurt, Austria
∗School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK

Abstract
Recently, HTTP Adaptive Streaming (HAS) has become the domi-

nant video delivery technology over the Internet. In HAS, clients
have full control over themedia streaming and adaptation processes.
Lack of coordination among the clients and lack of awareness of the
network conditions may lead to sub-optimal user experience and
resource utilization in a pure client-based HAS adaptation scheme.
Software Defined Networking (SDN) has recently been considered
to enhance the video streaming process. In this paper, we leverage
the capability of SDN and Network Function Virtualization (NFV) to
introduce an edge- and SDN-assisted video streaming framework
called ES-HAS. We employ virtualized edge components to collect
HAS clients’ requests and retrieve networking information in a time-
slotted manner. These components then perform an optimization
model in a time-slotted manner to efficiently serve clients’ requests
by selecting an optimal cache server (with the shortest fetch time).
In case of a cache miss, a client’s request is served (i) by an opti-
mal replacement quality (only better quality levels with minimum
deviation) from a cache server, or (ii) by the original requested
quality level from the origin server. This approach is validated
through experiments on a large-scale testbed, and the performance
of our framework is compared to pure client-based strategies and
the SABR system [12]. Although SABR and ES-HAS show (almost)
identical performance in the number of quality switches, ES-HAS
outperforms SABR in terms of playback bitrate and the number of
stalls by at least 70% and 40%, respectively.

CCS Concepts
• Information systems→ Information systems applications;
• Multimedia information systems→ Multimedia streaming.

Keywords
Dynamic Adaptive Streaming over HTTP (DASH), Edge Computing,
Network-Assisted Video Streaming, Quality of Experience (QoE),
Software Defined Networking (SDN), Network Function Virtualiza-
tion (NFV).
ACM Reference Format:
Reza Farahani, Farzad Tashtarian, Alireza Erfanian, Christian Timmerer,
Mohammad Ghanbari and Hermann Hellwagner. 2021. ES-HAS: An Edge-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
NOSSDAV ’21, September 28-October 1 2021, Istanbul, Turkey
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8435-3/21/09. . . $15.00
https://doi.org/10.1145/3458306.3460997

and SDN-Assisted Framework for HTTP Adaptive Video Streaming. In
Workshop on Network and Operating System Support for Digital Audio and
Video (NOSSDAV ’21)) (NOSSDAV ’21), September 28-October 1 2021, Istanbul,
Turkey. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3458306.
3460997

1 Introduction
Over the last few years, video traffic has become the dominant

type of traffic over the Internet and is expected to reach more than
80% of the total IP traffic by 2022 [14]. Employing HTTP on top
of TCP has risen recently for video transmission over the Internet.
Most video streaming services employ HTTP Adaptive Streaming
(HAS) like Dynamic Adaptive Streaming over HTTP (DASH) [28],
one of the standardized delivery methods for video streaming. In
DASH, each video is divided into segments of a given duration, e.g.,
between 2 and 10 seconds. Each segment is encoded into several
different quality levels based on bitrate or resolution (i.e., represen-
tations). This information, including the segments’ locations, e.g.,
cache server or origin server, is stored within the Media Presen-
tation Description (MPD). The users’ Quality of Experience (QoE)
is significantly affected by the video quality levels that the video
players will select. DASH provides the capability that video players
adapt the video quality by considering the client’s resources, e.g.,
playout buffer and/or the current network conditions. The adapta-
tion process can be performed with different schemes categorized
into (i) pure client-based, (ii) client-based assisted by network com-
ponents, and (iii) network-assisted. When DASH clients receive the
requested MPD in a pure client-based adaptation scheme, they run
their local adaptation logic to decide about the next segment quality.
The decision based on the local parameters, e.g., buffer status and
estimated available bandwidth, can lead to a sub-optimal approach
due to insufficient information about the network. In the second
approach, the clients’ adaptation decision is assisted by a network
component like a proxy server. In the network-assisted method,
the adaptation decision is performed via a centralized network
component with a global view of the entire network topology [11].
Thus, the network-assisted approach can be more beneficial for
the users’ QoE. Fundamental paradigms of modern networks, i.e.,
Software Defined Networking (SDN) and Network Function Virtual-
ization (NFV) have been used in modern network-assisted frame-
works [7, 8, 12, 18, 24]. The control plane and data plane are de-
coupled in the SDN approach, and network intelligence is placed
in a component called SDN controller[22]. This controller has a
complete view of the network by obtaining information from each
network component. The SDN controller can thus manage the net-
work efficiently [22]. As a complementary technology to SDN, NFV
provides the ability to virtualize different traditional network func-
tions as Virtual Network Functions (VNFs) [13]. Therefore, SDN and

https://doi.org/10.1145/3458306.3460997
https://doi.org/10.1145/3458306.3460997
https://doi.org/10.1145/3458306.3460997

NOSSDAV ’21, September 28-October 1 2021, Istanbul, Turkey Reza Farahani et al.

NFV can be utilized to improve network performance, management,
and Quality of Service (QoS) parameters, or can be used for a partic-
ular goal, e.g., increasing users’ QoE for video streams. In this paper,
we propose ES-HAS as an Edge- and SDN-Assisted Framework for
HTTPAdaptive Video Streaming. In our framework, an edge compo-
nent called Virtual Reverse Proxy Server (VRP) is introduced to assist
clients in receiving requested quality levels from the optimal cache
servers (with shortest fetch time). In case of a cache miss, a client’s
request is served (i) by an optimal replacement quality (only better
quality levels with minimum deviation) from a cache server, or (ii)
by the original requested quality level from the origin server. This
goal is achieved through a comprehensive network view provided
by the SDN controller, collecting relevant information from the
CDN (cache server occupancy) and from clients (requested video
qualities), in a time-slotted manner. ES-HAS adopts and extends
the core idea of [12] to introduce a new network-assisted video
streaming framework. ES-HAS improves user satisfaction without
any modification on the client-side. Although we use the standard
DASH, ES-HAS is not limited to DASH, and it can be extended to
other HAS formats. The main contributions of this paper can be
summarized as follows: (i) We leverage the SDN and NFV concepts
and design an architecture in three different layers to efficiently
assist DASH clients’ adaptation processes. (ii) We propose a mixed-
integer linear programming (MILP) model to serve clients’ requests
from optimal cache servers. The model determines a replacement
quality instead of the original requested quality, in case that qual-
ity is not available in the cache servers, with minimum quality
deviation. (iii) We analyze our proposed framework performance
through a series of experiments conducted in the CloudLab [27]
environment on a large-scale testbed and compare it with [12] and
the pure client-based adaptation approach.

The remainder of the paper is organized as follows. Section 2
reviews related work. We motivate our work through an example in
Section 3 before elaborating on the details of the proposed approach
and optimization model in Section 4. The evaluation setup and
results are presented in Section 5. Finally, Section 6 concludes the
paper and gives a few directions of the future work.

2 Related Work
In most prior works, the mechanism for adaptation is imple-

mented within the player. However, it has been shown that this
approach encounters instability and difficulty in ensuring band-
width fairness, especially in a shared network environment [6, 19].
Several client-based adaptation strategies were proposed to improve
users’ QoE by considering the aforementioned problems [20, 25, 26].
However, some approaches like FESTIVE [20] are vulnerable to in-
stability when the number of HAS players increases in a shared
network, possibly due to a bandwidth overestimation result, plus
require significant modifications on the client-side [9]. Network el-
ements can be utilized to assist DASH players in deciding the next
segment’s representation. A server-client cooperation approach
named ESTC was presented in [16]. It uses two independent algo-
rithms on the server side and client side to achieve adaptive video
streaming fairness, efficiency, and stability. Although this strategy
employs network element(s) to improve the users’ QoE, the next
representation’s adaptation decision is still made individually by
clients. Bentaleb et al. [9] used a bandwidth estimation method in

SDNDASH to allocate network resources for improving QoE per
client that was extended in SDNHAS [10] to support a cluster-based
estimation for bandwidth requests. Server and Network-Assisted
Dynamic Adaptive Streaming over HTTP (SAND) [30] was intro-
duced by MPEG and tries to mitigate DASH performance problems
by enabling protocol messages to be exchanged among network
components, e.g., CDN servers. However, SAND does not spec-
ify how to handle such messages efficiently. SAND defines four
message types, i.e., status messages, metrics messages like buffer
occupancy, packets enhancing reception, and packets enhancing de-
livery. If a network component can process all mentioned messages
or a subset of them, it is called a DASH-aware network element
(DANE). Although these systems can improve client-side adapta-
tion decisions, they are not straightforward to implement, and only
a few papers have pursued this approach yet. The authors of [12]
designed an SDN-enabled network-assisted framework for HAS sys-
tems, entitled SABR. SABR collects various information items from
the network side such as available bandwidth and cache occupancy
to guide player bitrate decisions. Erfanian et al. [17] leveraged the
SDN and NFV concepts and introduced a cost-aware real-time video
streaming approach. It uses a set of the virtualized components at
the edge of the network to collect data from the client side, cooper-
ate with the SDN controller, transcode video streams, and deliver
them through a hybrid multicast/unicast approach. In this paper,
we use NFV and SDN technologies to introduce ES-HAS. ES-HAS
collects information from both network side and client side and
employs virtual reverse proxy (VRP) servers at the edge of an SDN-
enabled network to provide network assistance for HAS clients in
case of both cache hits and misses.

3 Motivating Example
We present our main motivation by means of the following ex-

ample. Concerning the components involved in the example, we
refer to the ES-HAS architecture depicted in Fig. 1 and the fact
that ES-HAS adopts and extends the core idea of the SABR frame-
work [12]. We consider a simplistic scenario with only one cache
server, an SDN controller, several OpenFlow (OF) switches, one
VRP, and two clients. We assume clients request their next video
segments in an SABR-enabled system [12] (Fig. 2(a)) and an ES-HAS
system (Fig. 2(b)). As illustrated, the SDN controller should initially
receive cache map messages from cache servers (step 1). Each cache
map indicates the presence of representations (quality levels) of
requested video segments. The structure of a cache map is illus-
trated in Fig. 1. Whenever an OF CDN-side switch cannot find a
matching rule for (1), it sends a packet-in message (2) through the
OF protocol to the SDN controller. The SDN controller replies to
the packet-in (3) and installs a path for the cache server. Finally,
the cache map will be received by the SDN controller (4).

In an SABR-based system (Fig. 2(a)), the clients send requests
(5) to the SDN controller for acquiring cache map and network
status information. An OF client-side switch uses OF packet-in
messages (6) for these non-matching HTTP requests. After obtain-
ing the replies (7), the OF switch forwards these requests to the
SDN controller (8). Assuming that the clients support SABR, af-
ter receiving the requested information from the SDN controller
(9), they determine a joint cache map, including all cache servers
for the requested segments. The desired segments are requested

ES-HAS: An Edge- and SDN-Assisted Framework for HTTP Adaptive Video Streaming NOSSDAV ’21, September 28-October 1 2021, Istanbul, Turkey

SDN
Controller

Origin
Server

OF
Switch

Cache
Server

VRP

Application/Control Layer

Network Core Layer

Network Edge Layer

RESTful
messages

Monitoring Module
(MoM)

VRP

n+1 ... n+N

Segment

q

u
al

it
y

Cache Map

.

.

.

Clients

Controller DB

Request Analyzer
Module (RAM)

Service Optimizer
Module (SOM)

Controller-to-VRP Interface

VRP-to-Controller Interface

VRP
DB

Figure 1: Proposed ES-HAS architecture
by the clients (10 − 11). Then, the SDN controller installs the cor-
responding routes between the clients and the determined cache
servers (12 − 13). Consequently, the requested segments (14) are
transferred to the clients (15). It is clear that when the number of
DASH clients increases, the number of exchanged messages to/from
the SDN controller (via OF and HTTP) will increase proportionally.
Hence, system efficiency will decrease gradually. Our proposed
framework employs a VRP at the edge of the network to overcome
the aforementioned problem. A VRP works in time slots as follows.
As shown in Fig. 2(b), the clients send requests (5) to the VRP for
the desired segments’ qualities, and the VRP collects these received
requests in each time slot. The VRP plays the role of a gateway
for the client to the network and vice versa. Therefore, the VRP
requests the cache map and network status information from the
SDN controller for all collected requests (6 − 10). Using aggregate
messages in these steps decreases the number of exchanged mes-
sages to/from the SDN controller (via OF and HTTP) as compared
to SABR. After receiving the demanded information from the SDN
controller (10), the VRP runs an optimization program to determine
the optimal cache servers for the gathered clients’ requests. For the
sake of simplicity, let us assume that the requested segment quality
levels are available on the cache servers. Then they are requested
from the cache servers and transmitted to the VRP (11 − 16). A
second reduction of exchanged messages (as compared to SABR)
may occur in this stage since the VRP does not forward identical
requests by clients redundantly to the SDN controller and cache
servers. Finally, the fetched segments are transferred to the clients
(17). The details of the ES-HAS framework will be discussed in the
next sections. The number of communicated messages to/from the
SDN controller for both systems (Fig. 2) is shown in Table 1. In
real scenarios with a large video dataset, this amount of exchanged
messages could overload the SDN controller in an SABR-enabled
system. In our proposed structure, we introduce VRPs at the edge
of the system for collecting client-side requests, which increases
costs and imposes additional delay to the system. However, the
number of messages to/from the SDN controller, the load on the
SDN controller, and the network bandwidth consumption are sig-
nificantly reduced. With an increased number of clients, we can
enlarge the VRP’s resources or, alternatively, add another VRP to
manage more clients efficiently.

4 System Model and Problem Formulation
ES-HAS has three main layers: (i) Application/Control, (ii) Net-

work Core, and (iii)Network Edge (Fig. 1). On the application/control

Table 1: Number of messages to/from SDN controller
Arch. Number of . . . OF msgs. . . . HTTP msgs.
SABR 2𝑁𝑐𝑎𝑐ℎ𝑒 + 5𝑁𝑐𝑙𝑖𝑒𝑛𝑡 𝑁𝑐𝑎𝑐ℎ𝑒 + 2𝑁𝑐𝑙𝑖𝑒𝑛𝑡

ES-HAS 2𝑁𝑐𝑎𝑐ℎ𝑒 + 2𝑁𝑉𝑅𝑃 + 3𝑁𝑐𝑎𝑐ℎ𝑒𝑁𝑉𝑅𝑃 𝑁𝑐𝑎𝑐ℎ𝑒 + 2𝑁𝑉𝑅𝑃

layer, the SDN controller periodically monitors available bandwidth
and the cache servers’ occupancy information (cache maps) and
stores them in its database. Thus, we define a Monitoring Module
(MoM) as the controller’s main application module to collect the
aforementioned information from the OpenFlow switches. There-
fore, the database in the controller has accurate information about
cache servers and paths’ available bandwidths and serves the VRPs’
requests through the Controller-to-VRP Interface.

The network core layer consists of the OpenFlow switches con-
nected to the SDN controller, CDN components including an origin
server, and multiple cache servers. In the network edge layer, we
employ several VRPs, which are equipped with three main modules
as follows: (i) Request Analyzer Module (RAM), (ii) Service Optimizer
Module (SOM), and (iii) VRP-to-Controller Interface. Before describ-
ing the modules, it is noted that VRPs operate in time slots with
an equal duration of 𝜃 . As shown in Fig. 3, each time slot consists
of two intervals: (i) Data Collecting and (ii) Optimization interval.
In the first interval, users’ requests are gathered and aggregated
by a VRP’s RAM. To prevent sending identical requests (issued
by multiple clients in a given time slot), RAM identifies them and
considers only one request per segment. Moreover, using RESTful
messages, the VRP periodically retrieves the required information
(cache maps plus available bandwidths between each cache server
and the VRP) from the SDN controller and stores them in its DB.
Then, during the first interval, the VRP can fetch them from its
database. The SOM is executed by the VRP in the second interval to
serve clients’ requests optimally. Note that, according to the SOM’s
results, the data transmission will start in the first interval of the
next time slot. Actually, for each request, using the optimization
model presented later in this section, the SOM selects an appropri-
ate cache server that hosts the requested quality. However, when
the requested quality is not available in a cache server, the SOM
either determines an optimal replacement quality level on a cache
or fetches the originally requested quality from the origin server. In
this paper, we employ the concept that a replacement quality may
be delivered to the client rather than the requested quality level of
a segment, based on Consumer Technology Association’s Common
Media Client Data (CMCD) standard [15]. This standard defines the
information that a media player can communicate to (within media
object requests) and have processed and considered by CDNs. One

H

O

H

H

O

O

5

2

3

1

4

O

H

6

7

9

H

O

H

O

H

(a)

H

O

O

H

1

2

3

4
H

H 5

H9

c1

c2

c2

c2

10

c1

H 10

O

c1

c1

c2
11

11

O

12 13

12 13

c1c1

c2c2

14 c1

H 13 c2

15

14

H15

c1

c2

H

5

5

c1

H
 v (c1 & c2)

6

O

O

6
c2
c1

O7

c1

c2

O

7

H10

HH

c2

c1

v

v

11
 v

O13 14

15H

H

H

H

16

17

17

H 5

c2

H 8

H 5 c1

c2
H 8

H

8

(b)

DASH Clients DASH Clients
Cache Server

Cache Server
OF Switch OF Switch

OF Switch VRP SDN Controller
OF Switch

SDN Controller

H TTP Protocol

O penFlow Protocol

c1: Client1 Message
c2: Client2 Message
 v: VRP Message

c1
c2

v

v

v

9

v

v

vv

v

12

Figure 2: Exchanged messages in (a) SABR and (b) ES-HAS

NOSSDAV ’21, September 28-October 1 2021, Istanbul, Turkey Reza Farahani et al.

Table 2: Notation
Input Parameters

S, 𝑠
C, 𝑐
A, 𝑎𝑐,𝑠𝑞

𝑣
𝑐,𝑠
𝑞

R, 𝑅𝑠

𝑖𝑐

𝑚

K𝑐

𝛿𝑐𝑞
𝜋𝑐𝑞
𝜃

Set of cache servers and origin server, 𝑠 ∈ S
Set of clients, 𝑐 ∈ C
Set of available qualities in S, with 𝑎𝑐,𝑠𝑞 = 1 if quality 𝑞
requested by client 𝑐 is available in server 𝑠 , 𝑎𝑐,𝑠𝑞 = 0 o/w
𝑣
𝑐,𝑠
𝑞 = 1 if the requested quality 𝑞 is available in any
cache server, 𝑣𝑐,𝑠𝑞 = 0 o/w
Set of available bandwidth values where 𝑅𝑠 is the
available bandwidth between VRP and server 𝑠
Quality level requested by client 𝑐
Integer number to limit the range of potential
replacement quality levels for 𝑖𝑐
Set of eligible quality levels for a quality requested by
client 𝑐 , where K𝑐 = {𝑖𝑐 , 𝑖𝑐 + 1, ...,𝑚𝑖𝑛 [𝑖𝑐 +𝑚,𝑞𝑚𝑎𝑥] }
Size of the segment of quality level 𝑞 delivered to client 𝑐
Bitrate of the quality level 𝑞 ∈ K𝑐

Time slot duration
Variables

𝐵
𝑐,𝑠
𝑞

𝑇
𝑐,𝑠
𝑞

𝐹𝑐

𝑄𝑐

𝐵
𝑐,𝑠
𝑞 =1 if quality 𝑞 requested by 𝑐 is served from server 𝑠

Required time to fetch quality 𝑞 for client 𝑐 from server 𝑠
Deviation of quality level to serve client 𝑐 w.r.t. 𝑖𝑐
Selected quality bitrate to serve client 𝑐

piece of information is the “requested maximum throughput that
the client considers sufficient for delivery of a content asset”. In our
system, we interpret this as conveying the information that a client
will accept potential replacement (but only better) quality levels in
lieu of the actually requested quality of a segment, up to a certain
limit set by the client. For the sake of simplification, we assume
that each DASH client can request just one segment during each
time slot. However, it is possible to consider multiple requests from
each client in each time slot without fundamental changes in the
proposed model. Note that we will discuss how to determine the
time slot duration in Section 5.2. Let set A denote the cache map
(i.e., availability of segments/bitrates) that a VRP receives from the
SDN controller, where 𝑎𝑐,𝑠𝑞 = 1 means that the quality level 𝑞 re-
quested by client 𝑐 ∈ C is available on the server 𝑠 ∈ S (see Table 2
for notations). Moreover, let a VRP’s database host set R containing
available bandwidth values between the cache servers and the VRP.
In the SOM module, we introduce a mixed-integer linear program-
ming model (MILP) which tries to minimize the segment fetch time
if the requested segment quality is available in at least one cache
server; otherwise, for each non-cached segment quality, it deter-
mines whether to serve the client’s request by a replacement quality
from a cache server or by the original requested quality from the
origin server. We note that AI-based approaches like reinforcement
learning could be employed here; however, for the sake of simplicity,
a MILP model is proposed, and other approaches will be considered
in our future work. The proposed MILP model finds the optimal
solution by minimizing the fetch times and the segments’ quality
level deviations while maximizing the selected quality bitrates. We
derive the following constraints that must be satisfied to achieve an
optimal solution. Let us define 𝑖𝑐 as the quality level requested by

Time

...

...

Optimization Interval

Data Collecting (Clients’ Requests and Network Information)

Time Slot (i-1)

Time Slot (i)

Time Slot (i+1)

Figure 3: Proposed time slot structure

client 𝑐 ∈ C. We also define K𝑐 = {𝑖𝑐 , 𝑖𝑐 + 1, ...,𝑚𝑖𝑛[𝑖𝑐 +𝑚,𝑞𝑐𝑚𝑎𝑥]}
as the set of eligible (potentially, replacement) quality levels for
the segment requested by client 𝑐 , where𝑚 and 𝑞𝑐𝑚𝑎𝑥 denote the
maximum deviation from 𝑖𝑐 and the maximum quality level of the
segment requested by 𝑐 , respectively. In each optimization interval,
we select only one server to serve client 𝑐 . For this purpose, we
introduce binary variable 𝐵𝑐,𝑠𝑞 , where 𝐵𝑐,𝑠𝑞 = 1 indicates that quality
level 𝑞 must be served to client 𝑐 by cache server 𝑠 . As mentioned
earlier, if 𝑖𝑐 is available in any cache server, we should force the
model to select one cache server to serve the client’s request in the
original quality by setting the following constraint:∑
𝑠∈{S−{𝑂𝑟𝑖𝑔𝑖𝑛}}

𝐵
𝑐,𝑠
𝑞 × 𝑎

𝑐,𝑠
𝑞 = 𝑣

𝑐,𝑠
𝑞 , ∀𝑐 ∈ C, 𝑞 = 𝑖𝑐 (1)

where 𝑣𝑐,𝑠𝑞 = 1 if the requested quality 𝑞 = 𝑖𝑐 is available in any
cache server; otherwise 𝑣𝑐,𝑠𝑞 = 0. In the case of a cache miss, i.e.,
when 𝑖𝑐 is not available in any cache server, the VRP can fetch it
from the origin server or use other quality levels available in cache
servers. Thus, the following constraint must be satisfied:∑
𝑠∈S

∑
𝑞∈K𝑐

𝐵
𝑐,𝑠
𝑞 × 𝑎

𝑐,𝑠
𝑞 = 1, ∀𝑐 ∈ C (2)

The required time to fetch the quality 𝑞 for client 𝑐 from server 𝑠 ,
denoted by 𝑇𝑐,𝑠𝑞 , is determined by the following constraint:
𝛿𝑐𝑞 × 𝐵

𝑐,𝑠
𝑞 ≤ 𝑇

𝑐,𝑠
𝑞 × 𝑅𝑠 , ∀𝑐 ∈ C, 𝑞 ∈ K𝑐 , 𝑠 ∈ S (3)

where 𝛿𝑐𝑞 is the size of the quality 𝑞 requested by client 𝑐 and 𝑅𝑠 is
the available bandwidth between the VRP and cache server 𝑠 . We
also define 𝑄𝑐 as the selected quality bitrate to serve client 𝑐 ∈ C
according to the following constraint:∑
𝑠∈S

∑
𝑞∈K𝑐

𝐵
𝑐,𝑠
𝑞 × 𝜋𝑐𝑞 ≥ 𝑄𝑐 ∀𝑐 ∈ C (4)

where 𝜋𝑐𝑞 is the bitrate of the selected quality level 𝑞 for serving
client 𝑐 . To determine the quality deviation when the requested
quality 𝑖𝑐 is not available in K𝑐 and a replacement quality has to
be found, we introduce the following constraint:∑
𝑠∈S

∑
𝑞∈𝐾𝑐

|𝑖𝑐 − (𝐵𝑐,𝑠𝑞 × 𝑞) | ≤ 𝐹𝑐 ∀𝑐 ∈ C (5)

Finally, the proposed model is formulated as follows:

Minimize 𝛼1
∑
𝑐∈C

∑
𝑠∈S

∑
𝑞∈K𝑐

𝑇
𝑐,𝑠
𝑞

𝑇 ∗ +
∑
𝑐∈C

(𝛼2
𝐹𝑐

𝐹 ∗
− 𝛼3

𝑄𝑐

𝑄∗) (6)

𝑠 .𝑡 . Constraints (1) − (5)
𝑣𝑎𝑟𝑠. 𝑇

𝑐,𝑠
𝑞 , 𝐹𝑐 , 𝑄𝑐 ≥ 0, 𝐵𝑐,𝑠𝑞 ∈ {0, 1}

where 𝑇 ∗, 𝐹 ∗, and 𝑄∗ are the maximum values for the fetch time,
the quality level deviation, and the quality bitrate for client 𝑐 , re-
spectively. The SOM runs the above model for all clients’ requested
qualities in a time-slotted manner to minimize the fetch times and
quality level deviations as well as to maximize the qualities deliv-
ered to the clients. Moreover, in the objective function (6), we set
priorities for 𝑇𝑐,𝑠𝑞 , 𝐹𝑐 , and 𝑄𝑐 by adjusting the weights 𝛼1, 𝛼2, and
𝛼3, respectively. The values of the weights are tuned empirically
by considering the network conditions or application policies.

5 Performance Evaluation
In this section, we evaluate the performance of ES-HAS compared

to SABR [12] and pure client-based approaches.

ES-HAS: An Edge- and SDN-Assisted Framework for HTTP Adaptive Video Streaming NOSSDAV ’21, September 28-October 1 2021, Istanbul, Turkey

1 2 30 ...

Cache Server I

Cache Server II Cache Server III

VRP I

Cache Server IV

VRP II

31 32 60...

Origin Server SDN Controller

Client Group I Client Group II

Figure 4: ES-HAS evaluation testbed
5.1 Evaluation Setup

Our testbed consists of 72 nodes running Ubuntu 18.04 LTS in-
side Xen virtual machines. The proposed network topology is built
in the CloudLab [27] environment. As shown in Fig. 4, it includes
five OpenFlow (OF) switches, 60 AStreamDASH players [3, 21], two
VRP servers with the modules described in Section 4. Moreover, we
employ four cache servers and one extra server that jointly hosts
an origin server and a dockerized SDN controller. The bandwidth
values in different paths between eachVRP and the cache servers are
set to 100, 80, 60, and 40 Mbps, respectively, which explicitly gives
higher priority to download segments from the local cache servers.
Cache servers I and IV are local cache servers for client groups
I and II, respectively, with 100 Mbps bandwidth. The bandwidth
values to the origin server are set to 20 Mbps for both VRP servers.
Apache [4] and MongoDB [1] with supporting RESTful APIs for
cache map exchange are installed on all cache servers. Moreover,
Least Recently Used (LRU) is considered in all cache servers as the
cache replacement policy. The policy on a cache miss is that the
requested quality will be fetched from the origin server only to
the related local cache server, i.e., cache server I for client group I
and cache server IV for client group II. Floodlight [2] is used as an
SDN controller. Among other tasks, it monitors the network to find
paths’ available bandwidth (in one-second intervals) and as a result
assigns paths with the highest available bandwidth between a VRP
server and each cache server. For the sake of simplicity, we assume
that all clients already joined the network. Ten test videos [23]
with 300 seconds durations are used in our experiments. These
videos comprise two-second segments in five representations (89k,
0.262M, 0.791M, 2.4M, 4.2Mbps). 60% of the videos’ segments are
stored in each cache server randomly. All clients run simultaneously
in all scenarios. Each client requests one video where 𝑣𝑖𝑑𝑒𝑜1 is
streamed to clients (1,11,21,31,41,51), 𝑣𝑖𝑑𝑒𝑜2 is streamed to clients
(2,12,22,32,42,52), and so on. The time slot duration is set to 52
milliseconds in all experiments. (We will discuss how to obtain
the time slot duration in the next subsection.) Two different ABR
algorithms, BOLA [29] and SQUAD [31], representing buffer-based
and hybrid approaches, are used in all experiments. Python and the
PuLP library [5] are employed to implement and solve the proposed
MILP model.

5.2 Evaluation of the ES-HAS MILP Model
One of the critical parameters for analyzing the performance

of ES-HAS is the time slot duration. In the adaptation process, the
client’s ABR algorithm estimates the network’s bandwidth by mea-
suring the time between sending the request to download a segment
and having received the segment’s last packet. An additional delay
in the request-response interval (due to an overly long time slot
duration in the VRP) may convey an incorrect network situation to
the client; consequently, the client may request a lower quality level

2 3 4 5 6
0

50

100

150

200

250

 10 Requests 20 Requests 30 Requests 40 Requests 60 Requests

80 Requests 120 Requests 150 Requests 200 Requests 300 Requests

Server number

E
xe

cu
tio

n
tim

e
(m

s)

2 Sec. segment’s
duration

4 Sec. segment’s
duration

6 Sec. segment’s
duration

Figure 5: ES-HAS MILP model execution time for different
numbers of segment requests and cache servers

for the next segment. Thus, in the first experiment, we investigate
various time slot durations for various segment durations in order
to find suitable values of 𝜃 . For each segment duration of 2, 4, and
6 seconds, we start the experiment with the initial value of 𝜃 = 10
ms and gradually increase it in each run. The results show that for
time slot durations longer than 52, 95, and 200 ms for 2-, 4-, and
6-sec. segments, respectively, clients start to request lower quality
levels. We conclude that these values are the maximum time slot
durations without any negative effect on the clients’ adaptation
behavior. In the second experiment, we numerically investigate the
scalability of the proposed MILP model execution. As illustrated
in Fig. 3, each time slot includes data collecting and optimization
intervals. In the worst case, requests arriving at the beginning of
the optimization interval should wait to be processed in the next
optimization interval. In other words, a request could possibly wait
for two optimization intervals plus a collection interval. To avoid
optimization interval overlapping, in this study, we assume the
optimization interval should be less than or equal to 𝜃

2 . Therefore,
based on the first experiment, this value should be less than 26, 47,
and 100 milliseconds for 2-, 4-, and 6-sec. segments, respectively.
Wemeasure theMILP execution time for various numbers of clients’
requests and cache servers (Fig. 5). Considering the optimization
interval duration, the proposed MILP model can handle about 60,
100, and 210 different requests for 2-, 4-, and 6-sec. segments, re-
spectively, in a topology with four cache servers (see Fig. 5). The
number of requests decreases when increasing the number of cache
servers. We now calculate the maximum number of clients that
each VRP can handle in a topology with four cache servers. As we
discussed earlier, in our experiments, each client sends 150 requests
to download 150 segments with 2 seconds duration. We showed
that the maximum time slot duration should be less than or equal
to 52 ms; that means we have about 5700 (300

0.052) time slots in each
experiment. Assuming a uniform distribution, each client sends a
request in a given time slot with a probability of 0.026 (1505700). For
instance, in the case of 60 requests as the maximum number of
requests that can be handled by the proposed MILP model in each
time slot, one VRP can serve up to a maximum of 2300 clients and
send 60 distinct requests per time slot (2300 ≤ 60

0.026).

5.3 Evaluation of the ES-HAS Framework
To investigate the behavior of the ES-HAS framework regarding

different values of 𝛼1, 𝛼2, and 𝛼3, we define three metrics: ACS:
the usage percentage of cache servers with the shortest fetch time
(since the first term of the objective function (Eq. 6) forces the
model to select a cache server with the shortest fetch time); AMD:
the average (for different𝑚) of the maximum deviation between

NOSSDAV ’21, September 28-October 1 2021, Istanbul, Turkey Reza Farahani et al.

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

BOLA–ES-HAS
(Requested quality)

BOLA–ES-HAS
(Forwarded quality)

Segment Number

P
la

yb
ac

k
B

itr
at

e
(M

bp
s)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

SQUAD–ES-HAS
(Requested quality)

SQUAD–ES-HAS
(Forwarded quality)

Segment Number

P
la

yb
ac

k
B

itr
at

e
(M

bp
s)

(b)

Figure 6: Requested quality levels by the (a) BOLA and (b)
SQUAD algorithms vs. forwarded quality levels for client 1

(a) (b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

BOLA
SQUAD
BOLA-SABR
SQUAD-SABR
BOLA-ES-HAS
SQUAD-ES-HAS

Playback Bitrate (Mbps)

C
D

F

0

2

4

6

8

10

12

14

16
BOLA

BOLA-SABR

BOLA-ES-HAS

SQUAD

SQUAD-SABR

SQUAD-ES-HAS

A
ve

ra
ge

 n
um

be
r

of
 s

ta
lls

Figure 7: CDF of average playback bitrate in pure client-
based ABR, SABR, and ES-HAS (a), and average number of
stalls (b) for 60 clients

requested quality and forwarded quality (second term of the ob-
jective function (Eq. 6); and AQB: the average of the video quality
bitrate for all received segments in Mbps (third term of the objective
function (Eq. 6). In the first scenario, we investigate the reactions
of clients’ ABR algorithms when their decisions are overwritten
by replacement qualities. For this purpose, we set 𝛼1, 𝛼2, 𝛼3, and
𝑚 to 0.1, 0.1, 0.8, and 3, respectively, to force the model to select
appropriate replacement qualities in cache miss situations. All re-
quested qualities and forwarded qualities are logged by the VRP.
As shown in Fig. 6 (client I), the requested quality levels by the
BOLA and SQUAD algorithms are overwritten multiple times by
better replacement qualities (e.g., segments 46 and 15 requested by
BOLA (Fig. 6(a)) and SQUAD (Fig. 6(b)) respectively); however, that
does not have a negative impact on the overall playback quality
of subsequent segments. Other clients have a similar reaction to
the replacement quality. We extend our experiments by various
values of 𝛼 and𝑚 and investigate their impact on the aforemen-
tioned metrics. Table 3 shows the results for group I of clients. As
expected, most of the requested quality levels are delivered from
cache server I (denoted 𝑐1) for a high 𝛼1 value, which forces the
system to emphasize low fetch time (𝛼1 = 0.8, 𝛼2 = 0.1, 𝛼3 = 0.1).
On the other hand, setting 𝛼2 = 0.8 forces the model to deliver the
quality levels as requested by the clients and keeps AMD to zero
(𝛼1 = 0.1, 𝛼2 = 0.8, 𝛼3 = 0.1). By setting 𝛼3 to a high value, the
model can serve higher quality levels to clients (𝛼1 = 0.1, 𝛼2 = 0.1,
𝛼3 = 0.8). Although increasing𝑚 and 𝛼3 increases the AMD, the
model performs better in AQB since it has a wider range to select
replacement quality levels (𝛼1 = 0.1, 𝛼2 = 0.1, 𝛼3 = 0.8, and𝑚 = 3).

In the second scenario, we compare the performance of ES-HAS
with the pure client-based (video players in client groups I and II
directly send their requests to CDN edge servers I and IV, respec-
tively) and the SABR [12] approaches. Because [12] used different
components than we have in our testbed, we implemented the
SABR approach and reproduced its results without using its avail-
able source code. The 𝛼1, 𝛼2, 𝛼3, and 𝑚 values are set to 1, 0, 0,
and 0, respectively, to have fair comparisons among the schemes;
i.e., the VRP only transmits the original requested quality from

Table 3: Impact of𝑚, 𝛼1, 𝛼2, and 𝛼3 on MILP model behavior

m Metric (𝛼1,𝛼2,𝛼3): (.8,.1,.1) (𝛼1,𝛼2,𝛼3): (.1,.8,.1) (𝛼1,𝛼2,𝛼3): (.1,.1,.8)
ACS 𝑐1 : 56%, 𝑐2 : 25% 𝑐1 : 51%, 𝑐2 : 31% 𝑐1 : 46%, 𝑐2 : 36%

1 AMD 0 0 0
AQB 3.73 3.73 3.73
ACS 𝑐1 : 55%, 𝑐2 : 26% 𝑐1 : 53%, 𝑐2 : 29% 𝑐1 : 54%, 𝑐2 : 29%

2 AMD 1 0 1
AQB 3.75 3.73 3.75
ACS 𝑐1 : 56%, 𝑐2 : 36% 𝑐1 : 52%, 𝑐2 : 31% 𝑐1 : 52%, 𝑐2 : 32%

3 AMD 1 0 .437
AQB 3.75 3.75 3.8

BOLA SQUAD BOLA-SABR SQUAD-SABR BOLA-ES-HAS SQUAD-ES-HAS
0

3000

6000

9000

Q5

Q4

Q3

Q2

Q1

N
um

be
r

of
 r

eq
ue

st
s

pe
r

qu
al

ity

(a) (b)
0

10

20

30

40

50

60

70
BOLA

BOLA-SABR

BOLA-ES-HAS

SQUAD

SQUAD-SABR

SQUAD-ES-HAS

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
q

u
a

lit
y

sw
itc

h
e

s

Figure 8: Number of requests for each quality level (a), and
average number of quality switches (b) for 60 clients
the optimal cache server. As illustrated in Fig. 7 and Fig. 8(b), the
ES-HAS framework outperforms the pure client-based method in
terms of playback bitrate and the number of quality switches since
it fetches segments from the cache server with the shortest fetch
time. Although SABR and ES-HAS show (almost) identical results
in terms of the number of quality switches for both ABR meth-
ods (Fig. 8(b)), ES-HAS results in better performance in terms of
playback bitrate (Fig. 7(a)), the number of requests for the highest
quality level (Fig. 8(a)), and the number of stalls compared to SABR
(Fig. 7(b)). Recognizing similar requests (video/segment/quality)
and sending only one request instead of several requests to the
selected cache server, plus employing an optimization-based ap-
proach for the cache/segment selection policy are the main reasons
for ES-HAS performance improvements over SABR.
6 Conclusion

This paper leverages the SDN and NFV paradigms to propose
the ES-HAS framework providing network assistance for HTTP
adaptive video streaming. We introduce VNF components named
VRPs at the edge of the network. ES-HAS (via the SDN controller)
provides VRPs with information on network conditions and avail-
able video sources (cache servers). In addition, VRPs collect clients’
requests for video segments and aggregate them in time slots. Using
this information, VRPs run an optimization model in a time-slotted
manner to help clients get their requested segment quality levels
from cache servers with the shortest fetch times or receive from
cache servers better replacement quality levels with minimum devi-
ation from the original requested quality levels. We implement the
proposed framework and its modules on a cloud-based large-scale
testbed consisting of 60 clients. We conduct experiments in different
scenarios, evaluate the MILP model’s behavior, and compare the
results with another state-of-the-art approach. Experimental results
demonstrate that, on average, ES-HAS outperforms SABR in terms
of playback bitrate and the number of stalls by at least 70% and 40%,
respectively. Extending our proposed framework for edge caching
and redesigning the proposed MILP model to improve more QoE
parameters and establish users’ fairness are possible future work
directions.

ES-HAS: An Edge- and SDN-Assisted Framework for HTTP Adaptive Video Streaming NOSSDAV ’21, September 28-October 1 2021, Istanbul, Turkey

Acknowledgments
The financial support of the Austrian Federal Ministry for Dig-

ital and Economic Affairs, the National Foundation for Research,
Technology and Development, and the Christian Doppler Research
Association is gratefully acknowledged. Christian Doppler Labora-
tory ATHENA: https://athena.itec.aau.at/.

References
[1] 2007. MongoDB. Retrieved 2021-03-07 from https://www.mongodb.com
[2] 2012. Floodlight. Retrieved 2021-03-07 from https://github.com/floodlight/

floodlight
[3] 2013. AStream: A rate adaptation model for DASH. Retrieved 2021-03-07 from

https://github.com/pari685/AStream
[4] 2020. Apache HTTP Server. Retrieved 2021-03-07 from https://httpd.apache.org
[5] 2020. PuLP. Retrieved 2021-04-13 from https://pypi.org/project/PuLP/
[6] Saamer Akhshabi, Lakshmi Anantakrishnan, Ali C Begen, and Constantine Dovro-

lis. 2012. What happens when HTTP adaptive streaming players compete for
bandwidth?. In Proceedings of the 22nd International Workshop on Network and
Operating System Support for Digital Audio and Video. 9–14.

[7] Alcardo Alex Barakabitze, Arslan Ahmad, Rashid Mijumbi, and Andrew Hines.
2020. 5G network slicing using SDN and NFV: A survey of taxonomy, architec-
tures and future challenges. Computer Networks 167 (2020), 106984.

[8] Alcardo Alex Barakabitze, Nabajeet Barman, Arslan Ahmad, Saman Zadtootaghaj,
Lingfen Sun, Maria G Martini, and Luigi Atzori. 2019. QoE management of
multimedia streaming services in future networks: a tutorial and survey. IEEE
Communications Surveys & Tutorials (2019).

[9] Abdelhak Bentaleb, Ali C Begen, and Roger Zimmermann. 2016. SDNDASH:
Improving QoE of HTTP adaptive streaming using software defined networking.
In Proceedings of the 24th ACM International Conference on Multimedia. 1296–
1305.

[10] Abdelhak Bentaleb, Ali C Begen, Roger Zimmermann, and Saad Harous. 2017.
SDNHAS: An SDN-enabled architecture to optimize QoE in HTTP adaptive
streaming. IEEE Transactions on Multimedia 19, 10 (2017), 2136–2151.

[11] Abdelhak Bentaleb, Bayan Taani, Ali C Begen, Christian Timmerer, and Roger
Zimmermann. 2018. A survey on bitrate adaptation schemes for streaming media
over HTTP. IEEE Communications Surveys & Tutorials 21, 1 (2018), 562–585.

[12] Divyashri Bhat, Amr Rizk, Michael Zink, and Ralf Steinmetz. 2017. Network
assisted content distribution for adaptive bitrate video streaming. In Proceedings
of the 8th ACM on Multimedia Systems Conference. 62–75.

[13] Margaret Chiosi, Don Clarke, Peter Willis, Andy Reid, James Feger, Michael
Bugenhagen, Waqar Khan, Michael Fargano, Chunfeng Cui, Hui Deng, et al. 2012.
Network functions virtualisation: An introduction, benefits, enablers, challenges
and call for action. In SDN and OpenFlow World Congress, Vol. 48. SN, 202.

[14] Cisco. February 2019. Cisco Visual Networking Index: Forecast and Trends,
2017–2022. White Paper (February 2019).

[15] Consumer Technology Association. 2020. CTA Specification: Web Application
Video Ecosystem - Common Media Client Data. CTA-5004. Technical Report. https:
//cdn.cta.tech/cta/media/media/resources/standards/pdfs/cta-5004-final.pdf

[16] Oussama El Marai, Tarik Taleb, Mohamed Menacer, and Mouloud Koudil. 2017.
On improving video streaming efficiency, fairness, stability, and convergence

time through client–server cooperation. IEEE Transactions on Broadcasting 64, 1
(2017), 11–25.

[17] Alireza Erfanian, Farzad Tashtarian, Reza Farahani, Christian Timmerer, and
Hermann Hellwagner. 2020. On Optimizing Resource Utilization in AVC-based
Real-time Video Streaming. In 2020 6th IEEE Conference on Network Softwarization
(NetSoft). IEEE, 301–309.

[18] Alireza Erfanian, Farzad Tashtarian, and Mohammad H. Yaghmaee. 2018. On
Maximizing QoE in AVC-Based HTTP Adaptive Streaming: An SDN Approach.
In 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS).
1–10. https://doi.org/10.1109/IWQoS.2018.8624161

[19] Te-Yuan Huang, Nikhil Handigol, Brandon Heller, Nick McKeown, and Ramesh
Johari. 2012. Confused, timid, and unstable: picking a video streaming rate is
hard. In Proceedings of the 2012 Internet Measurement conference. 225–238.

[20] Junchen Jiang, Vyas Sekar, and Hui Zhang. 2012. Improving fairness, efficiency,
and stability in HTTP-based adaptive video streaming with festive. In Proceedings
of the 8th International Conference on Emerging Networking Experiments and
Technologies. 97–108.

[21] Parikshit Juluri, Venkatesh Tamarapalli, and Deep Medhi. 2015. SARA: Segment
aware rate adaptation algorithm for dynamic adaptive streaming over HTTP. In
2015 IEEE International Conference on Communication Workshop (ICCW). IEEE,
1765–1770.

[22] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Esteve
Rothenberg, Siamak Azodolmolky, and Steve Uhlig. 2014. Software-defined
networking: A comprehensive survey. Proc. IEEE 103, 1 (2014), 14–76.

[23] Stefan Lederer, Christopher Müller, and Christian Timmerer. 2012. Dynamic
adaptive streaming over HTTP dataset. In Proceedings of the 3rd Multimedia
Systems Conference. 89–94.

[24] Hwanwook Lee, Yunmin Go, and Hwangjun Song. 2018. SDN-assisted HTTP
adaptive streaming over Wi-Fi network. In 2018 Fifth International Conference on
Software Defined Systems (SDS). IEEE, 205–210.

[25] Zhi Li, Xiaoqing Zhu, Joshua Gahm, Rong Pan, Hao Hu, Ali C Begen, and David
Oran. 2014. Probe and adapt: Rate adaptation for HTTP video streaming at scale.
IEEE Journal on Selected Areas in Communications 32, 4 (2014), 719–733.

[26] Konstantin Miller, Emanuele Quacchio, Gianluca Gennari, and Adam Wolisz.
2012. Adaptation algorithm for adaptive streaming over HTTP. In 2012 19th
International Packet Video Workshop (PV). IEEE, 173–178.

[27] Robert Ricci, Eric Eide, and CloudLab Team. 2014. Introducing CloudLab: Scien-
tific infrastructure for advancing cloud architectures and applications. ; login::
the magazine of USENIX & SAGE 39, 6 (2014), 36–38.

[28] Iraj Sodagar. 2011. The MPEG-DASH standard for multimedia streaming over
the internet. IEEE Multimedia 18, 4 (2011), 62–67.

[29] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. 2016. BOLA: Near-
optimal bitrate adaptation for online videos. In IEEE INFOCOM 2016-The 35th
Annual IEEE International Conference on Computer Communications. IEEE, 1–9.

[30] Emmanuel Thomas, MO van Deventer, Thomas Stockhammer, Ali C Begen, M-L
Champel, and Ozgur Oyman. 2016. Applications and deployments of server and
network assisted DASH (SAND). (2016).

[31] Cong Wang, Amr Rizk, and Michael Zink. 2016. SQUAD: A spectrum-based
quality adaptation for dynamic adaptive streaming over HTTP. In Proceedings of
the 7th International Conference on Multimedia Systems. 1–12.

https://athena.itec.aau.at/
https://www.mongodb.com
https://github.com/floodlight/floodlight
https://github.com/floodlight/floodlight
https://github.com/pari685/AStream
https://httpd.apache.org
https://pypi.org/project/PuLP/
https://cdn.cta.tech/cta/media/media/resources/standards/pdfs/cta-5004-final.pdf
https://cdn.cta.tech/cta/media/media/resources/standards/pdfs/cta-5004-final.pdf
https://doi.org/10.1109/IWQoS.2018.8624161

	Abstract
	1 Introduction
	2 Related Work
	3 Motivating Example
	4 System Model and Problem Formulation
	5 Performance Evaluation
	5.1 Evaluation Setup
	5.2 Evaluation of the ES-HAS MILP Model
	5.3 Evaluation of the ES-HAS Framework

	6 Conclusion
	Acknowledgments
	References

