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Abstract—Real-time video streaming traffic and related ap-
plications have witnessed significant growth in recent years.
However, this has been accompanied by some challenging issues,
predominantly resource utilization. IP multicasting, as a solution
to this problem, suffers from many problems. Using scalable video
coding could not gain wide adoption in the industry, due to re-
duced compression efficiency and extra computational complexity.
The emerging software-defined networking (SDN) and network
function virtualization (NFV) paradigms enable researchers to
cope with IP multicasting issues in novel ways. In this paper,
by leveraging the SDN and NFV concepts, we introduce a cost-
aware approach to provide advanced video coding (AVC)-based
real-time video streaming services in the network. In this study,
we use two types of virtualized network functions (VNFs): virtual
reverse proxy (VRP) and virtual transcoder (VTF) functions. At the
edge of the network, VRPs are responsible for collecting clients’
requests and sending them to an SDN controller. Then, executing
a mixed-integer linear program (MILP) determines an optimal
multicast tree from an appropriate set of video source servers
to the optimal group of transcoders. The desired video is sent
over the multicast tree. The VTFs transcode the received video
segments and stream to the requesting VRPs over unicast paths.
To mitigate the time complexity of the proposed MILP model,
we propose a heuristic algorithm that determines a near-optimal
solution in a reasonable amount of time. Using the MiniNet
emulator, we evaluate the proposed approach and show it achieves
better performance in terms of cost and resource utilization in
comparison with traditional multicast and unicast approaches.

Keywords—Dynamic Adaptive Streaming over HTTP (DASH),
Real-time Video Streaming, Software Defined Networking (SDN),
Video Transcoding, Network Function Virtualization (NFV).

I. INTRODUCTION

IN recent years, video streaming has gained the largest
portion of Internet traffic. According to [1], video streaming

will grow up to 88% of the total Internet traffic by 2022. Thus,
video streaming has become a dominant application for current
networks and, especially due to real-time video streaming, also
a major challenge. On the client side of video streaming, a
wide variety of devices and applications have emerged; in
conjunction with advances in mobile networks, this leads to a
more and more heterogeneous environment. Hence, providing
different customized services for video streaming applications
is essential. Currently, real-time video streaming may have to
use multiple unicast connections to stream a video to multiple
clients. This approach, however, can generate redundant traffic
and waste a significant amount of network resources. Thus,
researchers try to address this issue by mostly relying on
two main approaches: i) use multicast approaches to reduce
redundant traffic, and ii) use more efficient video coding
methods for real-time streaming.

Leveraging multicast communication could lead to a con-

siderable reduction in overall bandwidth consumption in back-
bone networks [2]. However, current IP multicast approaches
like IGMP [3] and PIM-SM [4] still face several challenges.
First, each router has to maintain the state of a multicast
group, which requires complicated operations in the routers.
Second, IP multicast routers do not have a global view of
the network status and can hardly determine the optimal
multicast trees for ensuring end-to-end quality of service (QoS)
requirements [5]. Finally, the multicast topology for video
streaming is usually dynamic, i.e., clients can join and leave
on-the-fly. However, current IP networks are not able to re-
configure the routing paths dynamically and adaptively. To
overcome the IP multicast limitations, some papers proposed
application-layer multicasting [6]–[9]. Since this approach uses
overlay networks, a stream may traverse several times through
some nodes in IP networks. This can also result in wasting
network resources and increasing transmission delays.

With the emergence of SDN, SDN multicast was proposed
with advantages over IP multicast [10]–[12]. In SDN, the data
plane and the control plane are decoupled [13], which allows
applications to collaborate with network nodes to achieve intel-
ligent and dynamic service provisioning. The data plane con-
sists of hardware or software elements dedicated to forwarding
packets. The control plane, i.e., an SDN controller, manages
the data plane elements. SDN provides a flexible platform that
can perform adaptive routing algorithms for different network
applications. Besides, SDN can modify traffic to guarantee
QoS for certain traffic flows, e.g., video streams.

In addition to deploying multicast for reducing the network
traffic, specific video encoding methods can be adopted to
achieve that goal. Scalable video coding (SVC) [14] provides
scalable representations of AVC-encoded videos. It offers three
types of scalability, i.e., spatial, temporal, and quality scalabil-
ity. SVC encodes a video into N layers including a base layer
and multiple enhancement layers. The reception and decoding
of more layers generally lead to improved video quality on the
receiver’s end. This allows to serve different requested qualities
in heterogeneous networks by transmitting enhancement layers
instead of videos encoded separately in different qualities; and
it makes SVC suitable for a multicast environment. However,
the scalability of SVC comes at a cost in coding efficiency.
The SVC overhead can roughly be estimated at minimum 10%
per enhancement layer in comparison with AVC. This means
transferring a video with four enhancement layers utilizes
at least 50% more network resources than transferring the
best quality with AVC [15]. Moreover, when using DASH-
SVC streaming, each layer of each video segment needs to
be requested separately, imposing HTTP message overhead
and RTT delays. Also, multicasting different SVC layers
requires establishing different multicast trees; constructing and
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maintaining these trees are still challenging issues in this area.
In this paper, motivated by the above-mentioned issues,

we propose an AVC-based real-time video multicast stream-
ing framework by leveraging SDN and NFV. We note here
that the proposed approach can be easily applied to high
efficiency video coding (HEVC) and scalable high efficiency
video coding (SHVC). In this study, we employ two types of
VNFs: i) a set of virtual reverse proxy servers (VRPs) that
are used on the edge of the network to aggregate the clients’
requests and send them to the SDN controller [16], and ii) a
set of virtual transcoder functions (VTFs) that are hosted by
some point-of-presence (PoP) nodes to achieve a significant
reduction in bandwidth consumption. After gathering requests
from VRPs, the SDN controller executes a mixed-integer
linear programming (MILP) optimization model to determine
a multicast tree from an optimal source media server to an
appropriate subset of PoPs running VTFs. Then, each AVC-
encoded video segment in its highest requested quality must
be delivered over the multicast tree from the source node to
VTFs. Since VTFs are responsible to satisfy VRPs’ requests,
they produce the lower qualities of each segment received
from the source and then transmit them to the VRPs in a
unicast fashion. It is worth noting that using VTFs results
in substantial saving in multicast bandwidth usage due to
transcoding to other requested qualities; in contrast, in SVC
multicasting, each desired quality should be streamed from
the source to VRPs. However, transcoding imposes decoding
and (predominantly) re-encoding costs on the network. Thus,
placement of transcoders in the edge means more transcoders
and therefore higher transcoding costs. On the other hand,
placing transcoders closer to the video origin results in fewer
transcoders but higher bandwidth utilization. In summary, the
present study’s main contributions can be described as follows:
• We leverage the SDN concept and NFV technology to

efficiently serve DASH clients’ requests in AVC real-time
streaming.

• We propose an MILP model to jointly construct the opti-
mal multicast tree and VTFs’ placement with the objective
of minimizing the resource utilization and VTFs’ costs.

• We propose a heuristic approach to achieve a near optimal
solution in polynomial time.

• We evaluate the performance of the proposed framework
using MiniNet and compare it with other SVC- and AVC-
based multicast and unicast approaches.

II. RELATED WORK

Current multicast standards such as PIM-SM [4] build
the shortest path tree by employing unicast routing protocols.
However, it is difficult to reduce bandwidth consumption
efficiently when constructing the shortest path tree, because the
path is calculated in a distributed manner by the participating
routers and their local information may miss some edge
aggregation chances. On the contrary, a Steiner tree [17] could
determine the optimal tree with minimum cost. Nevertheless,
finding the Steiner tree has been proven to be NP-hard; thus,
it is not adopted in current multicasting approaches. Some
heuristic algorithms, such as [18], have been proposed to ad-
dress Steiner tree time complexity. The receiver-driven layered
IP multicast protocol was proposed by McCanne et al. [19].
They proposed SVC-style transmission based on IP multicast
over heterogeneous networks. IP multicast limitations have

motivated researchers to deploy a multicast tree in the ap-
plication layer. Ref. [8] proposed a hybrid approach to build
an overlay tree on both tree and mesh designs; the problem
of finding a set of stable nodes to construct a tree-based
backbone was formulated in the paper. Constructing multiple
multicast trees for SVC streaming by using a P2P overlay
network was proposed in [20]. The paper tried to alleviate the
IP multicast limitations by leveraging the overlay architecture
to build a bandwidth-aware multicast tree. However, due to
its communication overhead, this approach is not efficient
compared to traditional IP multicast.

In the SDN area, some papers, such as [13], [21], showed
the SDN capabilities for unicast traffic engineering. SDN
was also considered for multicast traffic in the literature.
Ref. [10] used SDN to propose a multicast approach in data
center networks; the proposed algorithm achieved a significant
reduction in bandwidth utilization. Huang et al. [22] built
multiple multicast trees by considering both link and network
capacities. Ref. [23] proposed an SDN multicast framework
for SVC streaming called SDM2Cast. The framework is able
to identify and process SVC streaming in the network nodes.
However, the paper did not propose any routing algorithm for
SVC streaming. A streaming framework was devised in [24]
employing segment routing (SR), SDN, and multicasting. It
provides an efficient live streaming service for 5G mobile users
by constructing a multicast tree.

Using SDN and NFV technologies could lead to the
deployment of infrastructure in a cost-effective way. The
SDN controller can determine the optimal routing path that
passes through a chain of VNFs to fulfill the requirement of
different services like video transcoding. Zhang et al. proposed
a mechanism to build a multicast tree where there is a single
VNF processing step, in order to minimize the NFV and link
costs [11]. A framework for routing and VNF placement in an
optical network was proposed in [25]. These papers proposed
their approaches based on the assumption that each server
could host just one VNF type for each source-destination pair.
On the contrary, [26] assumed that some servers could host
all types of VNFs, so each flow needs to pass through only
one server to meet all the required VNFs. Ref. [27] proposed
an MILP model to jointly determine optimal routing and VNF
placement with minimizing both NFV and link costs. Since the
problem is NP-hard, the authors proposed a heuristic algorithm
to alleviate time complexity. Xu et al. devised an approxima-
tion algorithm to obtain VNF placement in the SDN multicast
tree in order to minimize the NFV implementation costs in
terms of computing and bandwidth resource consumption [28].

The authors in [29] leveraged the SDN controller informa-
tion to construct a multicast tree for a video conferencing sys-
tem. A multi-source multi-destination manycast approach was
proposed in [30]. The authors formulated an ILP model and a
heuristic algorithm to determine the manycast tree for real-time
SVC streaming. The objective of the proposed model was to
improve the available link capacity utilization. The authors as-
sumed that multiple geographically distributed servers provide
video sources and clients can join a real-time streaming service
dynamically. Yang et al. [31] presented a multicast approach
for an OpenFlow network to save network bandwidth. The
OpenFlow controller provides controllable video multicasting
by routing the flow for each video layer separately. Instead
of IGMP, they utilized a centralized management system to



maintain the relationships between hosts and groups. Ref. [32]
introduced an approach for SVC video conferencing based on
SVC video multicasting called ASCast. The paper formulated
an ILP model to build a multicast tree with the goal of
maximizing delivered video layers to clients while considering
the ternary content-addressable memory (TCAM) size as a
constraint. Ref. [33] uses an equivalent bandwidth theory to
estimate the available bandwidth for the links in the network. A
finite-state machine is employed to do in-network adaptation,
based on the estimated bandwidth, and to determine the video
layers that could be delivered through the network.

III. MOTIVATING EXAMPLE

Before introducing the proposed approach, let us present
our main motivation through the following example. Assume
the Tears of Steel video sequence is encoded by H.264/AVC in
different qualities as shown in Table I, following [34]. Also,
we use [35] to encode the sequence by SVC. We consider
a simple topology consisting of one media server S, four
point-of-presence nodes (PoPs) P1-P4, and two virtual reverse
proxy servers (VRPs) X1 and X2 (Fig. 1). The two VRPs
X1 and X2 are hosted by two local servers each of which
is responsible to gather all requests from DASH clients in
cells A and B, respectively. Suppose X1 and X2 collected
the following quality requests from DASH clients: X1: [QId-
0,QId-4], X2: [QId-1,QId-3]. In this example, we are going to
evaluate the performance of using SVC and AVC encoding
in terms of bandwidth usage for serving the clients in the
following scenarios. In the first scenario, we evaluate the
performance of SVC encoding. Since in SVC all layers up to
the highest requested quality must be simultaneously delivered
from the source server to each VRP [14], we consider four
multicast trees for QId-0 to QId-3 and one unicast path for
delivering QId-4 from S to X1 (Fig. 1(a)). All paths are shown
in different colors according to the video layers’ colors. As il-
lustrated in Fig. 1(a), the total consumed bandwidth for serving
all proxies is 136.8 Mbps. In the second scenario, by leveraging
NFV technology, we employ VTFs to substantially enhance
AVC-based video streaming performance. Using VTFs enables
us to reduce bandwidth usage by sending only the maximum
requested QId (here QId-4 in X1 is the maximum quality)
from the source node to VTFs over a multicast tree. The
VTFs are responsible for transcoding the received segments
into the requested qualities and unicasting them to each proxy
accordingly. As depicted in Fig. 1(b), by delivering QId-4 from
S to a VTF on PoP P2, it can serve the requested qualities
by separate unicast paths. The total consumed bandwidth is
obtained at 112.2 Mbps. In a third scenario, by adding another
VTF, we can achieve even less bandwidth usage. As Fig. 1(c)
shows, the traffic flow from P2 to X1 can be reduced by
launching another VTF on the server in cell A. Thus, the total
bandwidth usage reaches 107.8 Mbps, at least a 20% reduction
compared to the SVC scenario. Although using VTFs reduces
total bandwidth usage, some issues must be addressed in this
study: i) specifying the optimal number and locations of the
VTFs, ii) determining an appropriate multicast tree from an
optimal source media server to the VTFs, and iii) designing
accurate data paths from the VTFs to the destination VRPs.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

The proposed approach can be introduced in three main
layers: i) application/control, ii) network core, and iii) network

edge (see Fig. 1(d)). Consider a limited set of media servers,
denoted by S, and an SDN controller placed in the first layer.
For the next layer, we set P as a group of point-of-presence
(PoP) nodes equipped with OpenFlow switches connected to
the SDN controller and sufficient resources to be able to launch
VTFs. In the network edge layer, using a finite number of
VRPs, we can aggregate the DASH clients’ requests. To cope
with the addressed problem, we employ two sets of VNFs,
as introduced above: i) virtual reverse proxies (VRPs) and
ii) virtual transcoder functions (VTFs), denoted by X and T ,
respectively. For simplicity of presentation, we consider that
clients request to receive different qualities of a segment of
real-time video stream v.

Let qc,x be the requested quality of DASH client c received
by VRP x. After collecting requests, each VRP x should
update its serving quality list for video v, denoted by Qx, and
send it to the SDN controller. Furthermore, the SDN controller
sets Q∗ as the maximum quality level requested by VRPs for
video v. It is also assumed that all requests must be served
during τ seconds as a deadline. A data path from a set of
source media servers to the DASH clients can be split into three
parts: i) a multicast tree from an optimal media server denoted
by Sopt to Topt running on Popt, ii) unicast data paths from
Topt to each VRP, and iii) data transmission from each VRP
to DASH clients, where Topt and Popt are the optimal subsets
of T and P determined by the SDN controller, respectively. In
this paper, we are going to address the first two parts. Now, to
find an optimal solution in terms of determining the multicast
tree, the unicast data paths and optimal data transmission rates,
we introduce a mixed-integer linear program (MILP). Let us
first represent the deadline constraint. Considering the given
deadline τ , assume that each segment of video v is sent over
the multicast and unicast paths in θmulti and θuni units of
time, respectively; furthermore, it should be processed by Topt
in θtrans time. Thus, we have:

θmulti + θuni + θtrans ≤ τ (1)

For ease of explanation, the remaining constraints can be
categorized into two groups, according to the subproblems: i)
create multicast tree and VTF placement; and ii) design unicast
paths and assign Topt to VRPs (see Table II for notations).

i) Multicast Tree and VTF Placement
Creating the multicast tree and using VTFs enables us to
optimize bandwidth usage by sending quality level Q∗ to Topt
instead of delivering all quality levels requested by VRPs. The
VTFs in Topt are responsible for transcoding and delivering the
requested level(s) to each VRP x according to Qx. Thus, this
group of constraints focuses on how to create a multicast tree
and its data transmission rate from Sopt to Topt. To this end, we
need to determine an optimal source media server (Sopt) and
an optimal number of VTFs (Topt); also, an optimal subset
of P (Popt) must be selected to host Topt. The following
equation determines appropriate VTF locations, with binary

Table I: Resolutions and bitrates of Tears of Steel encodings [34].
QualityId Resolution AVC bitrate SVC bitrate

QId-0 1280x760 2.2 Mbps 2.2 Mbps (BL)
QId-1 1920x1080 4.1 Mbps 4.5 Mbps (BL+EL1)
QId-2 2560x1440 6.7 Mbps 8.1 Mbps (BL+EL1-2)
QId-3 3840x2160 11.6 Mbps 15 Mbps (BL+EL1-3)
QId-4 3840x2160 19.1 Mbps 26.7 Mbps(BL+EL1-4)
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Figure 1: Three scenarios of the motivating example ((a),(b),(c)) and the proposed architectural model (d).

variable Bt,p = 1 denoting that VTF t is placed on PoP p:∑
t∈T

∑
p∈P

Bt,p ≥ 1 (2)

It is assumed at least one and at most |X | VTFs can be
selected to serve all proxies (VRPs) in X . It is worth noting
that for designing a multicast tree, the accuracy of the tree in
terms of connectivity and supporting sufficient bandwidth must
be guaranteed. Therefore, to satisfy the connectivity feature,
we simply consider that Sopt has to send a very small segment
with size m to the k = |X | VTFs:∑
s∈S

Ys = 1 (3)∑
t∈T

∑
p∈P

rts,p = mYs ∀s ∈ S (4)∑
j∈{P∪X}

rtp,j −
∑

j∈{P∪S}

rtj,p ≤ −Bt,p
m

k
∀t ∈ T , p ∈ P (5)

where the binary variable Ys determines whether media server
s is responsible for sending data (Ys = 1) or not (Ys = 0).
Moreover, for two connected nodes i and j ∈ {S ∪ P}, rti,j
is the amount of data toward destination t ∈ T that should be
transmitted from node i to j. Equality constraint (3) selects
only one media server as Sopt. Equation (4) forces Sopt as the
only source node to send the assumed small segment with size
m. Constraint (5) states that those PoPs that participate in the
multicast tree but do not host a VTF (or Bt,p = 0) must deliver
all received data to their neighbors; the other PoPs that host the
VTF(s) must receive at least m/k amount of data. However,
we use rti,j only for satisfying the connectivity among selected
nodes in the multicast tree, while to support the segment with
quality Q∗ of video v, denoted by ξ, the following constraints
must be met:

rti,j ≤ Li,j ∀t ∈ T , i, j ∈ {S ∪ P ∪ X} (6)
Li,jξ ≤ wi,jθmulti ∀i, j ∈ {S ∪ P ∪ X} (7)

where Li,j is a binary variable that determines whether link
(i, j) is used in the multicast tree (Li,j = 1) or not (Li,j = 0).
Constraint (6) states that if rti,j ≥ 0 then Li,j must be set to 1;
however, if link (i, j) does not provide the required bandwidth
for transmitting the requested segment with length ξ during
θmulti, it must be set to 0 (Equation (7)). In fact, the value of
ξ is adjusted according to the quality Q∗ by the SDN controller.
We define F as the set of available VTF instance types, each of
which provides different VTF processing capacity. Note that a
VTF with greater processing capacity needs more resources to

be launched and is more expensive. Now, to select at least one
instance type f ∈ F for each selected VTF t, the following
constraint should be satisfied:∑
p∈P

Bt,p ≤
∑
f∈F

Ft,f ≤ |F|
∑
p∈P

Bt,p ∀t ∈ T (8)

where |F| shows the size of set F . For each t ∈ Topt with
VTF instance type f , its processing time θt,f and required
resources ct,f should be taken into account. Thus, through the
next constraint, the maximum segment processing time by the
instance type f of VTF t is measured:∑
f∈F

Ft,fθt,f ≤ θtrans ∀t ∈ T (9)

We note that the processing time of different segment sizes by
each VTF instance type is assumed to be equal. Furthermore,
the following constraint guarantees that the total resource
consumption by the selected VTF instances does not exceed
the available resource of PoP p:∑
t∈T

∑
f∈F

Ft,fct,f ≤ Cp ∀p ∈ P (10)

where Cp is the total available resources of PoP p.
ii) Unicast Paths and Topt to VRP Assignment

To deliver transcoded data from the set Topt to each VRP x
regarding its requested quality list Qx, we first need to find
an optimal VTF t ∈ T and then determine an optimal unicast
path from t to VRP x. Let us assume that each VRP x must
be served by one VTF t ∈ T ; thus, we have:∑
t∈T

At,x = 1 ∀x ∈ X (11)

where the case that binary variable At,x = 1 means that VTF
t is in charge of serving VRP x. Let dt,xi,j be the amount of
data that must be forwarded from i ∈ P to j ∈ {P ∪X}, with
origin VTF t and destination VRP x. As we mentioned earlier,
each VRP x must receive a specific amount of data denoted
by ζx according to its Qx which can be formulated as follows:∑
t∈T

∑
p∈P

dt,xp,x = ζx ∀x ∈ X (12)

Since we allocated θuni units of time for unicast data transmis-
sion (see Equation (1)), the next constraint selects links with
sufficient bandwidth:∑
x∈X

∑
t∈T

dt,xi,j ≤ wi,jθuni ∀i, j ∈ {S ∪ P ∪ X} (13)



Table II: Notations.
Notation Description

Input Parameters
S,Sopt Set of origin servers and an optimal one for

serving clients
P,Popt, Cp Set of PoPs and optimal subset for serving users

where Cp shows available resources of p ∈ P
T , Topt, k Set of k available virtual transcoder functions

(VTFs) and optimal subset for serving clients
Ft, ct,f ,θt,f Set of various instance types for t ∈ T where

each instance f needs ct,f amount of resources
and takes θt,f seconds to process a segment

X Set of virtual reverse proxy servers (VRPs) that
received at least one request from users

τ Given deadline for delivering the requested
segment from Sopt to X

wi,j , ei,j wi,j is the available bandwidth of link ei,j
where i, j ∈ {S ∪ P ∪ X}

Qx, Q
∗ Each VRP x holds Qx as the list of qualities

requested by its clients; Q∗=max{Qx|∀x ∈ X}
ξ Size of requested segment with the quality

Q∗ that must be delivered from Sopt to Topt

ζx Total size of segments with qualities Qx that
must be delivered from Topt to VRP x

m Small positive value
Variables

Bt,p Bt,p=1 if PoP p hosts transcoder t else Bt,p=0
At,x At,x=1 if t ∈ T serves proxy x else At,x=0
Li,j Li,j=1 if link ei,j is selected else Li,j=0
Ys Ys = 1 if server s does serve requests else Ys=0
Ft,f Shows whether instance type f is selected for

VTF t (Ft,f = 1) or not (Ft,f = 0)
rti,j Amount of transmitted data on link ei,j toward

t ∈ Topt during θmulti where i, j ∈ {S ∪ P}
dt,xi,j Amount of transmitted data on link ei,j from

t ∈ Topt to x ∈ X during θuni, i, j ∈ {P ∪ X}
θmulti, θuni Time duration for transmitting data from set

S to T and from T to X , respectively
θtrans Amount of time for processing a segment by Topt

Moreover, we need to guarantee that if a VTF is launched on
a PoP, it has to send data to at least one VRP; in addition,
the other participating PoPs that do not host any VTFs must
deliver all incoming data to their next hop. We formulate these
constraints as follows:∑
j∈P

dt,xp,j −
∑
j∈P

dt,xj,p ≤ At,xζx ∀x ∈ X , t ∈ T , p ∈ P (14)∑
j∈P

dt,xp,j −
∑
j∈P

dt,xj,p ≤ Bt,pζx ∀x ∈ X , t ∈ T , p ∈ P (15)

Problem Formulation
Since the SDN controller is in charge of launching data paths
and serving all clients with the minimum cost, the objective
function of the proposed MILP model considers two main
normalized costs for launching VTFs and creating data paths
(multicast tree and unicast paths) as follows:

Min. α1

∑
t,f

Ft,fπt,f
F ∗

+ α2(
∑
i,j,t,x

dt,xi,j π
′

i,j

D∗
+
∑
i,j

Li,jπ
′

i,j

L∗
)

(16)
s.t. Constraints (1) – (15)
var. Bt,p, At,x, Li,j , Ys, Ft,f ∈ {0, 1},

rti,j , d
t,x
i,j , θmulti, θuni, θtrans ≥ 0

where F ∗, D∗, and L∗ are the maximum costs of running
VTFs, unicast data transmission, and multicast tree, respec-
tively. Moreover, we define two weight coefficients α1 and α2

to set desirable priorities for these terms. The weights can be
adjusted by the application manager where α1 + α2 = 1. On
the one hand, the SDN controller has to appropriately react to
any modifications of serving video stream v, in terms of clients
joining and leaving stream v, by running the proposed MILP
model; on the other hand, it is not reasonable to re-create data
paths and change VTFs’ instance types or even their locations
at each execution of the MILP model due to its overhead,
e.g., incurred by reconfiguring OpenFlow switches. Therefore,
we set priority for the current configuration (e.g., selected
multicast data path, and the number and positions of VTFs)
by defining two groups of cost values πt,f∀t ∈ T , f ∈ F
and π

′

i,j∀i, j ∈ {S ∪ P ∪X} for existing Topt and data paths,
respectively. In fact, the costs of links that are currently used
in the multicast tree and unicast paths and also the costs
of launched VTFs are set lower than those of other links
and VTFs that do not collaborate in any streaming service.
Thus, we give more preference to the existing configuration of
underlying data paths to be considered by the MILP model.

V. HEURISTIC ALGORITHM

Due to the high time complexity of the proposed MILP
model (16), we introduce an efficient heuristic method to
find a near-optimal solution. By considering the objective
function and the proposed constraints, the heuristic algorithm
is designed in two main procedures: (I) selecting an optimal
source node and creating a low-cost multicast tree from that
node to the given proxy servers (VRPs), and (II) cost-aware
VTF placement on the obtained multicast tree. In fact, the
first procedure determines Sopt and Popt while the second one
selects Topt. However, to obtain the multicast tree and Topt, the
maximum time duration for delivering data over the multicast
tree and also an accurate instance type for Topt must be given
to the procedures (I) and (II) as input parameters, respectively.

To do this, we devise a caller procedure to execute the other
two procedures with different input parameters iteratively. As
shown in Alg. 1, this procedure begins with the given set of X
and τ as input parameters and returns an appropriate multicast
tree, the positions of VTFs, and selected instance type as the

Algorithm 1: Caller Procedure
Input: X , τ
Output: MulticastTree, TransPos, V TFType

1 Global S,P, T ,F
2 Initialize: Flag =True, Results = [ ], BestCost =∞
3 F∗=Sort F based on their cost in ascending order
4 for f∗∈ F∗ do
5 θ∗ =ProcessingDelay(f∗)
6 θpath = τ − θ∗
7 if θpath > 0 then
8 Update the required bandwidth for creating multicast tree
9 MulticastTree =CreateMulticastTree(θpath,X )

10 if MulticastTree 6= Ø then
11 [Pos, Cost]=TranscoderPlacement(f∗,MulticastTree)
12 if Cost < BestCost then
13 Results = [MulticastTree, Pos, f∗]
14 BestCost = Cost

15 return Results[MulticastTree, Pos, f∗]



Algorithm 2: Procedure (I): CreateMulticastTree
Input: θpath,X
Output: MulticastTree

1 Initialize: MulticastTree = [ ]
2 [x∗, q∗] = max{Qx|∀x ∈ X}
3 PathSet=AllShortestPaths(S, x∗, q∗, θpath)
4 MulticastTree=LowCostPath(PathSet)
5 X=X -x∗
6 while X 6= Ø do
7 [x∗, q∗] = max{Qx|∀x ∈ X}
8 PathSet=AllShortestPaths(MulticastTree, x∗, q∗, θpath)
9 BestPath=LowCostPath(PathSet)

10 MulticastTree=AddNewPath(BestPath,MulticastTree)
11 X=X -x∗

12 return MulticastTree

Algorithm 3: Procedure (II): TranscoderPlacement
Input: f∗,MulticastTree
Output: BestPosition,BestCost

1 BestPosition =Root(MulticastTree)
2 BestCost=CostCalculation(MulticastTree,BestPosition, f∗)
3 Flag =True
4 while Flag do
5 if NewPositions == X then
6 Break()

7 NextCandidate =FindBestChild(BestPosition)
8 NewPositions = BestPosition+NextCandidate
9 for pos in NewPositions do

10 if AllChild(pos) in NewPositions then
11 NewPositions = NewPositions− pos

12 NewCost=CostCalculation(MulticastTree,NewPositions, f∗)
13 if NewCost < BestCost then
14 BestCost = NewCost
15 BestPosition = NewPositions
16 else
17 Flag =False

18 return BestPosition,BestCost

results. After sorting the VTF instance type set F (line 3), the
main for loop starts by selecting the lowest cost instance that
provides the highest processing delay. In each iteration, θpath,
the maximum deadline for delivering data from the source
node to the VRPs, is computed (lines 5 and 6); moreover, the
required bandwidth is updated accordingly (line 8). For each
VTF instance type and θpath > 0, procedure (I) is executed
and, for its valid output, procedure (II) then will be launched.
The total cost of each solution is calculated by procedure (II)
and the best solution is kept in the Results variable (line 13).

For creating the multicast tree, we use a greedy strategy
in Alg. 2. First, we select proxy x∗ that requested the max-
imum quality q∗ in VRPs and then among all shortest paths
from source nodes to x∗, the shortest one that supports the
required bandwidth is selected (lines 2-4) and stored in the
MulticastTree variable. Each remaining proxy x∗ in X joins
the MulticastTree through finding the shortest path from it
to all nodes on the multicast tree using the Dijkstra algorithm
(see while loop, lines 6-11). In each iteration, we select the
proxy with the maximum requested quality among remaining
proxies (line 7) to ensure that there is no bandwidth limitation
on the multicast tree for the next proxy. In Alg. 3, we place
an optimal number of VTFs with instance type f∗ on the
given multicast tree. We start from the root of the tree as
the BestPosition and calculate the total cost of placing a
VTF on the BestPosition as BestCost (lines 1 and 2). In

Table III: Different VTF instance types.

Index Resources Price($) Processing
TimeCPU RAM (GB)

Micro 1 core 1 0.02 5.1 sec.
Small 2 cores 2 0.04 3.8 sec.
Medium 4 cores 4 0.06 2.3 sec.
Large 8 cores 4 0.12 1.7 sec.

each iteration of the while loop, we select the best child node
in BestPosition (line 7) and then by having BestPosition,
NewPositions will be updated (line 8). Our criterion for
selecting a child as the best child is the amount of unicast
traffic that can originate from that node to the proxies if this
node hosts a VTF. We select a child node that should send
the most unicast traffic because this node can significantly
change the total cost. If we have a node with all its children in
NewPositions, that node must be omitted since its child(ren)
should host VTFs (lines 9-11). If the NewPositions results
in lower cost, the algorithm proceeds for the next best child
while the best position and cost are kept in BestPosition
and BestCost, respectively. Finally, if the NewCost is greater
than or equal to the BestCost (line 17) or we have all proxies
in NewPositions (line 5), then the procedure returns the best
results (line 18).

VI. PERFORMANCE EVALUATION

A. Evaluation Setup and Description of Scenarios
In order to evaluate the proposed model in a realistic

environment, we consider real network topologies provided
by the Internet Topology Zoo1: a small-, a medium-, and a
large-scale network. These topologies consist of 11, 47 and
113 PoP nodes and 5, 15 and 30 VRPs, respectively. The
number of DASH clients for each VRP and the quality levels
requested by each DASH client are randomly set between 1
and 10, and 1 and 5, respectively. Also, we use MiniNet2 as
the emulation system and Floodlight3 as the SDN controller.
Further, we use the Tears of Steel video sequence encoded
by H.264/AVC with 4 sec. segment length [34] (Table I).
Moreover, we employ the JSVM11 [35] to create a scalable
version of the video. Although the proposed MILP model
supports a deadline for delivering segments, the users’ requests
are held back in VRPs for two segments in order to have
time for transcoding in VTFs. The costs and specifications
of the different VTF instance types are extracted from [36].
In addition, the required time for transcoding the received
segments in VTFs to serve the requested quality levels by
VRPs, is calculated empirically for each VTF instance type
and shown in Table III. The variable τ is set to 6 sec. in the
experiments to have time for delivering segments from VRPs
to DASH clients. The performance of the proposed models
is evaluated in three scenarios. In scenario I, we conduct
experiments with different values of α1 and α2 for both the
proposed MILP model and the heuristic algorithm. Scenario
II evaluates the behavior of streaming the AVC- and SVC-
encoded sequence using multicast and unicast approaches. The
impact of the homogeneity of the clients’ requests on the
performance of the proposed approaches is investigated in
scenario III.

1http://www.topology-zoo.org, last access: April 4, 2020.
2http://mininet.org, last access: April 4, 2020.
3http://www.projectfloodlight.org, last access: April 4, 2020.
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Figure 2: Number of selected VTFs and measured total costs.
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Figure 3: Consumed bandwidth and generated OF commands.

The performance is evaluated in terms of bandwidth uti-
lization and path selection overhead. Due to leveraging SDN,
we use the generated OpenFlow (OF) commands as the main
criterion to express path selection overhead. Moreover, this
parameter implicitly reveals the amount of TCAM [13] usage
by the proposed approaches. Simulations were performed on
a 64-bit operating system with Windows 10, Intel Core i7-
3520M (2.90 GHz) processor and 16 GB of memory.

B. Scenario I
In the first scenario, we conduct evaluations of the proposed

MILP model and the heuristic algorithm using the small-scale
topology. Note that due to the high time complexity of the
MILP model, it is just applicable to the small topology. In this
experiment, we investigate the performance of the proposed
approaches for different values of α1, defined as the weight
parameter for VTF instance selection (see MILP model (16)),
from 0.1 to 0.8, and α2 is set to 1−α1. It is worth mentioning
that in each topology, the maximum number of transcoders
could be equal to the number of VRPs (refer to constraint 8);
thus, in the small-scale topology, we could have up to five
VTF instances. As depicted in Fig. 2, both approaches show
the same behavior. By setting α1 = 0.1 and α2 = 0.9, we
explicitly give more priority to the bandwidth usage that leads
to the same number of VTFs selection (four VTFs) by both
approaches. For greater values of α1, the approaches try to
minimize the total cost (MILP model (16)) by using fewer
VTFs as it is expected (both approaches select only one VTF
for α1 = 0.8). We extend our investigation by measuring the
amount of bandwidth consumption and the number of gener-

ated OF commands for the considered values of α1. As shown
in Fig. 3, by increasing α1, both the proposed MILP model and
the heuristic algorithm consume more bandwidth and generate
more OF commands. In more detail, the amount of bandwidth
used by the multicast tree declines gradually while the unicast
paths show the inverse behavior. This is because by growing
α1 both algorithms attempt to optimize toward fewer VTFs
which results in a shorter multicast tree by placing VTFs closer
to the source node. For example, by setting α1 = 0.8, the
MILP model and the heuristic algorithm select only one VTF.
However, due to placing the selected VTF on the source node
in the heuristic algorithm, the total bandwidth is consumed
by the unicast paths from the source node to the VRPs. For
a more detailed comparison, the solutions of both approaches
for α1 = 0.2 and α1 = 0.4 are shown in Fig. 4. As illustrated
in Fig. 3, the generated OF commands to set up the data paths
and the bandwidth utilization are very close for α1 ≤ 0.4 in
both models. For α1 = 0.3, the MILP model generates more
OF commands than the heuristic algorithm due to the use of
fewer transcoders in comparison with the heuristic algorithm.
However, the bandwidth utilization and the normalized cost for
the MILP model are a little less. Although the MILP model
produces better solutions in all cases, it suffers from high time
complexity and is not applicable in the larger-scale topologies.
Note that the heuristic algorithm first finds the multicast tree
in a greedy fashion, then by considering the weight parameters
determines the optimal number and locations for transcoders.
For α1 > 0.4, the heuristic algorithm exhibits more growth in
OF command generation and bandwidth utilization in contrast
to the MILP model. However, as shown in the next subsec-
tion, the heuristic approach has better performance than other
approaches studied.

C. Scenario II
We consider four different approaches to compare the

performance of the proposed heuristic algorithm: Multicast-
SVC, Multicast-AVC, Unicast-SVC, and Unicast-AVC. All ap-
proaches are implemented in the proposed architecture and
the experiments are conducted using the small-, medium-, and
large-scale topologies. For the SVC-based methods, we use the
SVC-encoded Tears of Steel sequence. We employ the PRIM
algorithm [37] to build the multicast tree for the multicast
approaches. In the SVC-based approaches, when a VRP re-
quests a quality level of a video, it must receive all quality
levels up to the requested one. In contrast, in the AVC-based
models, each VRP needs to receive just the requested quality
level. Thus, although the Multicast-SVC method consumes less
bandwidth in all topologies, the Multicast-AVC scheme has the
best performance in terms of generated OF commands among
these four methods (see Fig. 5(a)). For the unicast approaches,
the shortest paths between source and VRPs are determined
and the requested qualities are delivered through it. Using AVC
encoding generates fewer OF commands for both multicast
and unicast cases, while SVC encoding approaches have better
performance in terms of bandwidth usage. Finally, we run the
proposed heuristic algorithm over the considered topologies
with α1 = 0.2. As Fig. 5(a) depicts, our proposed method
saves a remarkable amount of bandwidth by transferring only
the highest requested quality to an appropriate set of VTFs.
Thus, due to creating one multicast tree from the source node
to VTFs, it imposes fewer OF commands to the network.
Moreover, unlike the traditional IP multicast approaches, it
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Figure 5: Comparing the performance of the proposed approach with other methods: (a) bandwidth consumption and generated OF commands
(Scenario II), (b-c) homogeneity levels of VRPs’ requests (Scenario III).

does not need to convert the multicast traffic to unicast.
However, the transcoding cost and its processing delay should
be taken into account.

D. Scenario III
In this section, we investigate the impact of the homogene-

ity level among requests of DASH clients on the performance
of the approaches under study in terms of bandwidth usage
and generated OF commands. To do this, we consider the
small-scale topology that consists of 5 VRPs (Fig. 4) with the
following request sets (RSs); each 5-tupel denotes the requests
issued by the VRPs (X1,X2,X3,X4,X5): RS1: (1,1,1,1,1); RS2:
(5,5,5,5,5); RS3: (1,2,3,4,5); RS4: (5,4,3,2,1). RS1 and RS2
are the homogeneous cases where all VRPs request iden-
tical quality levels. However, since producing the multicast
tree and unicast paths are affected by the VRPs’ locations
and requests, we define the two heterogeneous request sets
R3 and R4 with reverse orders. We note here that for the
homogeneous request case, the proposed MILP model and
the heuristic algorithm are forced to ignore using VTFs by
setting α1 = 0 because the requested quality can be delivered
from the source node to the VRPs over an optimal multicast
tree. As Fig. 5(b) shows, for homogeneous VRPs’ requests
(RS1 and RS2) SVC-based approaches, especially the unicast
strategies, consume more bandwidth due to sending identical
segments over different multicast or unicast paths. It is worth
noting that among the SVC-based approaches, as the requested
quality level increases, the SVC-based unicast method reveals
worse performance in bandwidth usage (compare RS1 and
RS2 for the SVC-based methods in Fig. 5(b)). Moreover,
the SVC-based methods suffer from high overhead of path
establishment (Fig. 5(c)) because of sending all quality layers
up to the requested one. For the heterogeneous VRPs’ requests
(R3 and R4), it is not easy to distinguish which method of
these four approaches has the best behavior. This is because,
in the heterogeneous environment, the results strictly depend
on the location of VRPs and their requested qualities. However,
as Fig’s. 5(b) and (c) depict, for all cases of VRPs’ request
sets (RS1–RS4), our proposed MILP and heuristic approaches

(with α1 = 0.2 for RS3 and RS4) outperform the other
algorithms in both criteria due to combining unicast and
multicast techniques as well as leveraging VTFs.

E. Execution Time of Proposed Heuristic Algorithm
As described earlier, the proposed heuristic algorithm in-

cludes the two procedures (I) (Alg. 2) and (II) (Alg. 3).
Assume G = (V, E) is the graph of the considered network
topology where V = {S ∪ P ∪ X} and E is the set of
edges connecting nodes in V. In Alg. 2, the main loop
iterates |X | × |P| times where in each iteration we need
to run the Dijkstra algorithm. Considering the complexity of
that algorithm, the overall time complexity of Alg. 2 can be
given as O(|X ||P|(|E| + |V|log|V|)). The time complexity
of Alg. 3 is O(|P|). We measured the execution time of the
proposed heuristic algorithm on the three topologies under
study. Table IV shows the execution times of Alg. 2 and Alg. 3
separately. The runtime of Alg. 2 does grow considerably with
the network size, but polynomially as expected. In comparison,
the execution time of Alg. 3 is very low.

VII. CONCLUSION

In this paper, we have leveraged the SDN and NFV
paradigms to propose an AVC-based real-time video multicast
streaming framework. We employ two types of VNFs named
VRP and VTF. The VRPs are implemented at the edge of
the network, collect the DASH clients’ requests, and send
them to the SDN controller. The SDN controller determines
a multicast tree from an optimal source to an appropriate
subset of VTFs hosted in PoPs. Then AVC-encoded segments
in the highest requested quality are transferred through the
multicast tree. The VTFs transcode the segments to the quality
levels requested by the VRPs. Finally, the obtained quality

Table IV: Execution time of proposed heuristic algorithm.
Topology Alg. 2 Alg. 3

Small-scale topology 3ms 0.8ms
Medium-scale topology 82ms 3ms

Large-scale topology 1210ms 17ms



levels are transferred to the VRPs in a unicast fashion. To
address time complexity of the proposed MILP model, we
introduce a heuristic algorithm. The proposed approaches are
evaluated using MiniNet and Floodlight and compared with
other unicast and multicast approaches. The performance of
the approaches is measured in terms of bandwidth usage and
network path selection effort. The proposed heuristic method
shows promising results: it is close to the MILP model and
results in a significant reduction in bandwidth usage and path
selection overhead in various scenarios investigated.

The transfer of segments between VTFs and modifying the
initial multicast tree instead of re-creating it are interesting
items for future work. Considering and reducing the end-to-
end streaming delay are open issues as well.
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